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ABSTRACT
Distributed Memory Based FPGA Debug

Robert Benjamin Hale
Department of Electrical & Computer Engineering, BYU
Doctor of Philosophy

Field-programmable gate arrays (FPGAs) are powerful integrated circuits for low-overhead
custom computing needs and design prototyping. Due to the hardware nature of programming an
FPGA, finding bugs in a design can be a very challenging process. Signals need to be physically
probed and data recorded in real time. This is often done by dedicating some resources on the
FPGA itself towards an embedded logic analyzer. This method is effective but can be time and
resource consuming. Academic research projects have produced a variety of methods for reducing
this difficulty.

One option that has previously been unexplored is the use of distributed LUT memory for
debug trace buffers, rather than dedicated FPGA BRAM. This dissertation presents a novel, lean
embedded logic analyzer that leverages leftover LUT resources on the FPGA for this purpose. Dis-
tributed Memory Debug (abbreviated as "DIME Debug”) provides some amount of signal visibil-
ity into very large (90%+ LUT utilized) FPGA designs or designs where the programmer requires
all available device BRAM, situations in which currently available embedded logic analyzers are
likely to fail.

The ubiquitous nature of LUTs on FPGAs provides opportunities to insert debug circuitry
near signals of interest without disturbing placement of the user design. Using only leftover LUTs
for trace buffers allows for effectively no area overhead. The DIME Debug system typically has a
critical path delay in the 7-9ns range, which can force non-ideal slower timing constraints on the
user design. A simulated annealing based placement algorithm and other optimizations are shown
to improve timing closure results from 20-50% depending on benchmark and probe count. DIME
debug can be instrumented into a fully implemented design incrementally using the RapidWright
CAD tool, resulting in debug iterations under 15 minutes even for very large benchmarks.

Another interesting possibility introduced by the use of memory LUTs for debug trace
buffers is preallocating these resources. Setting aside a certain number of LUTs before implemen-
tation of the user design leaves them available for incremental debug instrumentation. Experiments
with a preallocation scheme show that, with virtually no penalty to the user design, debug critical
paths are lowered by approximately 1ns and 2-3X the number of trace buffers can be instrumented
into most benchmarks.

Keywords: FPGA;. debug;.embedded logic analyzer, distributed memory
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PREFACE

Many of the contributions presented in this dissertation have been previously published
by the author within research conference papers [1-3]. The ideas, methods, experiments and re-
sults from those papers are expounded in much more detail than was possible in conference paper
format. They are also supplemented with additional background, experiments, and contributions.
Chapter 4 builds upon the work presented in [1] concerning enabling embedded debug in large
designs. Chapter 5 covers the timing impact discussion from [2], while the simulated annealing
placement method from that paper is covered in Chapter 6. Chapter 6 also includes and expands

on the preallocation scheme and lengthened debug trace buffer ideas originally published in [3].
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Field programmable gate arrays (FPGAs) are a powerful alternative to more common inte-
grated circuits such as CPUs and ASICs. FPGAs can be repeatedly re-programmed exactly to an
engineer’s need, allowing for fully customized, efficient designs with no manufacturing overhead
and low power consumption. This flexibility makes them well suited to a variety of low-volume,
compute-intensive applications, such as spacecraft or data centers, as well as inexpensive proto-
typing of designs destined for eventual fabrication.

However, this flexibility comes at the cost of programming difficulty. FPGAs are hardware
devices, which makes designs challenging to create and even more challenging to debug. Unlike
software debug, FPGA circuit data are not easily observed and programs cannot easily be halted
in order to view data changing one step at a time. Design signals must be individually probed at
a digital level and observed in real time by a logic analyzer. Resulting binary data must then be
carefully understood and interpreted in order to locate bugs. Physical limitations will typically
prohibit the observance of all design signals simultaneously. If the set of design signals that need
to be observed changes, the entire design typically needs to be re-implemented. Implementation
for large FPGA designs can require many hours of compilation time. A recent study of functional
verification trends revealed that the percentage of total FPGA project time spent on verification has
been rising year to year, reaching an average of 50% in 2018. Debug consumes an average of 42%
of verification time [4].

While it is possible to use an external logic analyzer to physically probe FPGA design
signals for debug, it is more common to use an embedded logic analyzer for this purpose. With this
method some of the circuitry on the FPGA itself is dedicated to debug. FPGA-to-host interfaces are
used to feed captured signal data back out to the host computer for observation. In addition to the

aforementioned challenges present to FPGA debug, embedded logic analyzers introduce another
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potential roadblock: consumption of FPGA circuitry. If the user has created a large design, it is
possible that there simply will not be enough FPGA left to include an embedded logic analyzer.
Another situation that can create this problem is a design that requires most or all of the memory on
the FPGA, such as memory intensive image processing applications [5]. Current embedded logic
analyzers require the use of Block-RAM (BRAM) on the FPGA to store observed data. These
on-chip memory resources are scarce [6] and can become unavailable for debug if an engineer
requires most, or all, of them for their design. In these situations currently available embedded

logic analyzers become infeasible options for FPGA debug.

1.2 Summary of Research

In consideration of the difficulties discussed in the previous section, this research has aimed
to create a novel embedded debug tool to alleviate some of the challenges involved with FPGA de-
bug. First, this tool enables debug in extremely large designs that use as much as 94% of the LUTs
or 100% of the BRAMs on the FPGA. This is achieved by using small LUT-based memory for
debug trace buffers. In addition, the time required for debug iterations (when the set of signals
to be observed is changed) is significantly reduced using this method. Where currently available
embedded logic analyzers may require many hours for an iteration, the tool presented here re-
quires an average of 8.8 minutes. This speedup is achieved by performing debug instrumentation
incrementally, after the user design has been completely implemented.

Titled Distributed-Memory (DIME) Debug, this new method leverages LUT resources left
unused by the user design. When Xilinx FPGA LUTs are used as memory they are referred to as
distributed memory, providing the name of the tool. Even the largest and densest user design will
leave sparse LUT resources unused and DIME Debug takes advantage of this leftover circuitry.
These leftover LUTs are configured as Xilinx Shift-Register LUTs (SRL). SRLs can act as small,
completely contained trace buffers to store signal data in first-in, first-out fashion.

A tool from Xilinx Labs called RapidWright [7] is used for incremental instrumentation of
DIME Debug. RapidWright is a library written in the Java coding language that allows manipu-
lation of FPGA designs outside of what Xilinx provides with the Vivado Design Suite [8]. With
RapidWright, SRL trace buffers can be placed in post-PAR designs in under three minutes on av-

erage.. The standard. Vivade.debug iteration requires a full implementation of the user design and

3
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can easily consume several hours for large designs — long enough to consume an engineer’s entire
work day. In comparison, the entire DIME Debug instrumentation cycle can be completed in, on
average across all benchmarks and experiments, under nine minutes.

An important consideration for an embedded debug system is how much it will alter the
original user’s design. The less this impact, the less the risk of the debugger hiding bugs or pre-
venting implementation of the combined user and debug circuit. The two primary concerns are (1)
area overhead and/or placement alteration and (2) increase in critical path delay.

DIME Debug can be instrumented with, effectively, no FPGA area overhead. This is
achieved by scavenging for and only using leftover, unused LUTs on the device after the user
circuit is fully implemented. Placement of the user design is never altered. LUTs are an abundant,
small resource on FPGAs. DIME Debug trace buffers, consuming as little as two LUTs each, are
thus extremely lean. This allows the DIME debugger to fit onto the FPGA even when 90% or more
of the LUTs on the FPGA are consumed by the user design. In our experiments, when targeting
designs of these sizes, commercial embedded logic analyzers were unable to fit onto the FPGA.
Using distributed memory for trace buffers also allows the user design to consume all BRAM on
the FPGA if needed.

As with all embedded logic analyzers, DIME trace buffers connect directly into design
signals. This carries the risk of increasing the wirelength of those signals and possibly increas-
ing the critical path delay of the design. Experiments on Kintex Ultrascale FPGAs indicate that
instrumented DIME Debug circuitry has a minimum propagation delay in the range of 6-8ns (166-
125MHz). Benchmarks with critical path delays already in this range saw relatively small timing
closure penalties (under 20% slowdown) after DIME Debug is instrumented, however, benchmarks
capable of operating at faster clock periods saw their minimum clock period brought into this 6-
8ns range. For some benchmarks, this forced significant clock slowdown in order to meet design
timing closure. Maintaining a clock period reasonably close to the original frequency can be crit-
ical for finding design bugs. Several optimizations, described below, are implemented into DIME
Debug in order to reduce these timing penalties.

One method of lowering propagation delays is by bringing connected design elements
closer together and thereby reducing wirelengths. For DIME Debug, this can be done by plac-

ing trace buffers near the signal they are monitoring. Initially, a greedy approach is used for

www.manaraa.com



placement. Trace buffers are placed on the closest available LUTs at the time they are created,
first-come first-served. This is later enhanced by following up the initial greedy placement with a
simulated annealing placement algorithm. Simulated annealing placement iterates over many pos-
sible solutions with the goal of a placement with the lowest total distance between DIME Debug
trace buffers and the sources of the nets being probed. Dependent on the benchmark and requested
number of debug probes, this enhancement reduced the critical path penalty from 2-3ns and/or
allowed as many as twice as many probes to be instrumented while maintaining the same timing
constraint. This optimization is especially effective at improving DIME Debug results when higher
numbers of debug probes are being instrumented.

As another method of improving signal-to-buffer proximity, allowing debug circuitry to
have priority on some LUT resources is considered. Rather than rely strictly on leftover resources
for debug, a small amount (approximately 1% of LUTs on the FPGA) of device resources are set
aside before implementation of the original design. The user is unable to use these resources, leav-
ing them available for DIME Debug trace buffers to later occupy. Preallocated locations may allow
DIME buffers to be placed closer to their respective sources. Benchmarks with the preallocation
scheme in place saw debug critical path penalties reduced by up to 2ns. In addition, since unused
LUTs on partially used FPGA sites are difficult to instrument post-PAR, preallocation ensures that
LUT resources are organized such that they remain valid locations for DIME Debug trace buffers.
For most benchmarks, this resulted in a 2-3x increase in the number of trace buffers that could be
instrumented.

While preallocation was shown to benefit the capabilities of DIME Debug, it also intro-
duces a question of how it might affect the original design. Limiting the design from using some
FPGA resources can have obvious repercussions. However, experiments show that preallocat-
ing only 1% of LUT resources has almost no effect on the original design. With the preallocation
scheme in place, all benchmarks implemented without issue and saw, at most, a critical path penalty
of 0.1ns.

Other paths within the DIME Debug system are considered for timing issues as well.
Routes between DIME trace buffers only ever operate at the frequency of the on-chip JTAG clock
and never at user clock speed, which is typically several times faster than the JTAG clock. These

paths could be the bottleneck restricting the maximum frequency at which the design, when in-
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strumented with debug circuitry, can operate. Multicycle path constraints inform Vivado routing
software that these paths are acceptable in the final implementation even if they cannot operate at
the same clock frequency as the user design. Experiments with multicycle path constraints revealed
the buffer-to-buffer path to indeed be the critical path for most benchmarks. Once the clock period
requirements on debug paths is loosened with multicycle path constraints, these benchmarks saw
a critical path decrease of up to 2ns in some cases. Similar to simulated annealing placement, this
optimization typically had the greatest effect when high numbers of probe counts were requested.

In addition to improving timing impacts, experiments were also conducted into seeing if
DIME Debug trace buffers could be deepened. One of the primary drawbacks of this debug system
is the small memory capacity of LUT-based trace buffers. The initial iteration of DIME Debug, in
which a trace buffer occupies a single memory LUT, could only hold 16 bits of signal history at a
time. While better than no data at all, 16 bits is very shallow and likely limiting to debug efforts.
Rather than use a single 16-bit SRL for each trace buffer, eight 32-bit SRLs are chained together
on a single FPGA site. This allows for 256-bit DIME trace buffers for a 16x depth increase. A
256-bit trace buffer requires eight LUTs instead of one, resulting in roughly 1/8th the total number
of design nets that can be probed. However, overall debug memory is approximately doubled and
lower routing congestion improves critical path penalties, typically by around 1ns.

Another significant drawback of DIME Debug at present is the lack of advanced triggering
mechanisms, an important part of any on-chip debug system. For the experiments in this disserta-
tion, a signal from the user design is used to indicate to the control system that data gathering has
completed. A more complete version of DIME Debug would include more complex and robust
triggering options. This, and other potential improvements to DIME Debug, are discussed in more
detail in the Future Work section of Chapter 9.

All experiments are conducted on a unique suite of five benchmarks created for this re-
search project. Singular FPGA designs that are both large enough to adequately test the hypoth-
esis of this work and simple to manipulate using RapidWright are challenging to either create or
procure. Instead, smaller modules were used and duplicated enough times to reach certain LUT
utilization threshholds, namely, 70, 80, and 90% (or as close to these cutoffs as module size would
allow). Benchmark modules include an LC3 processor (LC3), a sudoku puzzle solver (sudoku),

a random number generator (RNG), a micro-FIFO queue (uFIFO), and a random pulse generator
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(RPulseG). The LC3 module is based off of the work in [9] and programmed by the author of this

dissertation. The other four modules were obtained as open-source code from OpenCores [10].

1.3 Contributions

1. Demonstrated that LUT-based distributed memory can be used in place of traditional BRAM
trace buffers for embedded FPGA debug using the DIME Debug tool.

2. Demonstrated that distributed memory trace buffers can be instrumented into FPGA designs

that are already consuming as much as 94% of the LUTs on the device.

3. Showed the impact of instrumented DIME Debug trace buffers on a design in terms of critical

path delay using experiments that are repeated several times with different timing constraints.

4. Demonstrated that a simulated annealing based placement algorithm for DIME trace buffers
is effective in reducing critical path penalties, allowing increased debug probe counts oper-

ating at faster clock frequencies.

5. Demonstrated that preallocating a small portion of FPGA resources towards debug before
implementing the user design significantly improves debug abilities in most cases with al-

most no penalty to the original design.

6. Demonstrated that buffer-to-buffer routes in the DIME Debug system can become the critical
path in a design. Showed that loosening timing requirements on these routes with multicycle
path constraints significantly improves debug instrumentation success rates for most bench-

marks.
7. Demonstrated that DIME trace buffers can be deepened from 16-bit to 256-bit.

8. Created a set of 5 unique benchmarks created using module duplication to reach desired
percentages of FPGA LUT utilization. These benchmarks are used to test instrumentation of

distributed memory trace buffers on very large designs.
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CHAPTER 2. BACKGROUND AND RELATED WORK

In this chapter the present landscape of FPGA debug will be briefly reviewed. This dis-
cussion includes features and shortcomings of currently available logic analyzers and academic

research projects and how they relate to the contributions of this dissertation.

2.1 FPGA Debug

After an FPGA design has been created and the logic passes verification tests, the next step
in finding remaining bugs is to program the design onto an FPGA and observe it in real time. This
section will discuss the challenges involved in this process and current methods used to address

these challenges.

2.1.1 Observability

An important step of fixing any type of problem is to observe and interpret relevant infor-
mation. This is especially true of programming, where many variables and processes are inter-
twined and rapidly changing. When debugging most software programs a wealth of information
is readily available. A programmer can print out variable values at pertinent points in the code or
even halt the code and step through it one instruction at a time while virtually every bit of data
involved is easily observable. The physics of the underlying hardware are abstracted away from
the programmer.

FPGAs, however, are hardware devices. While the mathematical logic of hardware descrip-
tion language (HDL) code can be verified with simulation, the functionality of the code may fail
when programmed onto real circuitry and operated at speed. New bugs can surface as the physical
limits of wires and transistors come into play and test the soundness of a design — for example,
the propagation delay of some device wires may be slower than the code development software

estimates. This issue would be impossible to simulate. Without almost any abstraction of these
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physical issues, an engineer must debug by probing signals in the design and observe voltages
changing in real time. The engineer must also be careful that the debug process itself does not alter

the operation of the circuit and hide or create additional bugs.

2.1.2 Logic Analyzers

For on-chip FPGA debug, a device called a logic analyzer is employed. A logic analyzer
physically probes wires on an FPGA while the design is operating. Voltage on the wires is sampled
at intervals that match the clock frequency of the design. The observed voltages are recorded in
digital memory and can be displayed as linear waveforms for the engineer to view and interpret.
Numerous design signals are probed and their outputs aligned and compared in an attempt to
discover flaws within the design. Logic analyzers can be either external or embedded.

An external logic analyzer is an additional piece of hardware separate from the FPGA. The
design nets under consideration are programmatically connected to external hardware pins on the
FPGA development board. Wired probes from the logic analyzer are connected to these pins. The
design is operated and, once signaled by a trigger condition, the logic analyzer will begin recording
the values observed on the pins. External logic analyzers are valuable for keeping the amount of
FPGA resources required for debug relatively low. The nets will require some additional routing
to be wired to pins, which may affect timing closure, but FPGA memory and logic cells are not
necessary. These types of logic analyzers are also valuable for monitoring multiple devices at
once, simultaneously providing visibility for signals from multiple sources. However, hardware
logic analyzers are limited by the number of external pins available on the development board and
can be monetarily expensive.

Embedded logic analyzers are made up of some of the circuitry within the FPGA itself.
FPGA vendors have created their own IP for this purpose, such as the Xilinx Integrated Logic
Analyzer [11] or Intel’s SignalTap [12]. Embedded logic analyzers avoid the need for additional
expensive hardware. Instead of routing signals out to development board pins, signals are routed to
on-chip memory. Control and triggering systems must be included within FPGA fabric. Embedded
logic analyzers require resources on the FPGA beyond what the user design requires. Rather
than being limited by external board pins, debug becomes bottlenecked by the number of on-chip

resources-left-available.
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When using either external or embedded logic analyzers, the engineer must consider how
the logic analyzer itself could impact the user design being debugged. This is because, in the case
of either type of analyzer, additional wires are being instrumented on the FPGA that will be in
contact with design wires and need to meet design timing constraints. If this additional circuitry
alters the timing of the user design, new bugs can be introduced and/or current bugs may seemingly
be hidden. For example, if the debug circuit forces the entire design to operate at a slower clock
period than it was originally created for, bugs related to timing may no longer be present at all.
Finding such bugs would be critical if the design is required to operate at or above a certain clock
frequency.

Another common challenge when using logic analyzers is the time consumed for each
debug iteration. Typically, regardless of the logic analyzer used, it will not be possible to simul-
taneously observe all design signals relevant to a bug. After a first debug iteration an engineer
may realize that additional design signals need to be probed. This will require new routing on the
FPGA and typically involves a full re-compilation of the design. For small designs this can take
tens of minutes, and for the largest and most complex designs it can take many hours. In either
case, multiple debug iterations can become unacceptably time consuming. Commercially offered
embedded logic analyzers typically offer a method of incremental compilation that attempts to re-
duce time consumed by reusing some design elements that have already been placed and routed.
However, in our experiments using Xilinx software, this feature only resulted in trivial speedup of

debug iterations.

2.1.3 FPGA Memory

Memory on an FPGA typically falls into two categories: dedicated and distributed.

The first is dedicated memory such as Block-RAM (BRAM). There will be relatively few
BRAMs on an FPGA compared to other logic pieces, however, each BRAM can hold memory
volume in the kilobyte range. All BRAM on an FPGA cumulatively have memory capacity in the
dozens of megabytes range. BRAMs are preferable for relatively large memory needs of a design.
BRAM are typically located in clusters in certain areas of the FPGA layout and require a clock

cycle after addressing for data to be available.
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The second type of memory available on an FPGA is Lookup Table (LUT) based distributed
memory. This is when certain logic resources on the FPGA are purposed to act as addressable
memory. There are significantly more LUTs on an FPGA than BRAM, however, a single LUT
RAM can only hold memory volume in the range of dozens to hundreds of bits. If all device LUTs
were to be implemented as RAM, cumulative memory capacity is typically in the range of several
megabytes. Distributed memory is fast and memory can be accessed in the same clock cycle that it
is addressed. Not all LUTs can be leveraged as memory, but both memory- and non-memory-LUTs
are finely spread throughout the majority of the FPGA’s layout.

On Xilinx FPGAs, memory-LUTs can be implemented as Shift-Register LUTs (SRL).
SRLs are limited in size compared to simple LUT RAMs, but all the logic required to act as a
shift register is included within the LUT [13].

2.2 Related Research

Commercially available embedded logic analyzers are powerful tools for providing observ-
ability into FPGA designs. However, they require significant FPGA resources and engineer time
and are not perfect solutions. Many academic research projects have attempted to further improve
the process of on-chip FPGA debug. This section will review the recent developments in this field

and discuss some similarities and differences to the contributions in this dissertation.

2.2.1 Increasing Observability

One method of reducing the time consumed when debugging an FPGA is to circumvent de-
bug iterations altogether. These iterations are necessary because, using traditional methods, only a
relatively small subset of design nets can be probed and observed at a time. Research projects have
aimed to eliminate this problem by attempting to speculate an inclusive set of signals to be probed
beforehand [14, 15] or by attempting to probe nearly all the nets in the design simultaneously. The
latter method is achieved by multiplexing a large percentage of nets under consideration into a
smaller number of memory buffers. Debug iterations thus become trivial as the only change nec-

essary is deciding which signal is passed through the multiplexers for observation [16—19]. These
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methods are effective in reducing iteration count, but, when necessary, require longer recompila-
tion times and some incur significant logic overhead [16].

These multiplexed methods are one form of a debug overlay. Overlays are a somewhat
recently popular idea that have been researched for several possible enhancements to FPGA use,
including debug [20]. An overlay is a virtual layer between the FPGA and user that acts as a form
of user interface, designed to simplify how the user interacts with the device. Debug overlays
can reduce iteration time by managing the debug configuration and simplifying alteration steps.
Overlays allow post-PAR changes at a fraction of the time of a full recompilation [21]. In addition
to multiplexing debug signals, overlays have been used for assisting in debug triggering [22, 23].
Complex overlays have even been used to provide near-software levels of debug visibility [24].
Once implemented, overlays can significantly simplify the debug process. However, they can

require significant overhead in chip resources to implement and/or engineer time to create.

2.2.2 Scan-Based Debug

Scan-based debug is another method for improving design observability. This approach in-
volves capturing a snapshot of the entirety of the device state at a given moment and then passing
this data out to the host. One option for scan-based debug is scan-chains, similar to those included
on non-field-programmable integrated circuits. This requires using significant additional FPGA
logic to tie into each flip-flop on the chip, requiring as much as an 84% area overhead [25,26]. Al-
ternatively, some FPGAs have built in “readback” functionality, eliminating the need for additional
circuitry [27,28].

Both methods of scan-based debug are excellent for offering extensive visibility into the
design and, in the case of readback, may be able to do so without significant overhead or design
changes. However, these techniques require the design to be halted in order to draw design data
to the host. Extracting this information consumes 2-8 seconds [27], resulting in significant design
execution slowdown. Design halt also poses a risk of disrupting interactions with other devices
communicating with the FPGA [29]. In addition, readback is not capable of viewing the design
state of all FPGA logic. Combinational design elements don’t retain a state that can be observed,

nor are the contents of shift-register LUTs visible (as discovered during the course of this research).
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Some projects have attempted to alleviate the burden of design halt and take advantage of
the high visibility benefits of scan-based debug by adding additional control circuitry, providing a
more comprehensive debugging environment. Iskander et al. use readback to enable a somewhat
software-like breakpoint debug system in [27]. Hybrid methods, that combine aspects of both scan-
based and trace-based debug (discussed in the following subsection), are employed in [30,31] to

minimize the number of design halts and provide signal history.

2.2.3 Trace-Based Debug

The most commonly used method for embedded debug is trace-based. Trace buffers are
memories used to store the data observed on design signals at run time. A triggering mechanism
is used to tell buffers when to begin (or cease) storing new signal data. A short history of changes
on the signal being probed is saved. Histories from a number of design nets can be saved in
trace buffers and then compared to find issues. The number of design signals that can be viewed is
significantly lower than a scan-based system, however, trace-based debug has the critical advantage
of being able to observe the design being tested while it is operated at speed [32].

Most commercially available embedded logic analyzers are trace-based debug systems
[11,12,33]. However, these tools all have similar drawbacks. They require significant on-chip
resources, alter the timing and placement of the user’s design, and/or consume significant engi-
neering time in debug iterations. Research projects focused on trace-based solutions typically aim
to address at least one of these concerns.

One common way to decrease debug iteration time is by moving the point of instrumen-
tation. Commercial tools typically instrument debug logic alongside the user design. While this
does allow for more control of placement and routing of the combined circuit, it can also make sig-
nificant changes to the user design and is hugely time consuming each time the debug net selection
needs to be altered. Instead, many research projects insert debug circuitry incrementally, mov-
ing the point of instrumentation until after the user’s design is already placed and routed [34—40].
Isolating debug implementation from design implementation allows for much faster debug itera-

tions [38] and, when done carefully, leaves the design unaltered [40].
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2.2.4 Reducing Debug Critical Path

To prevent any possibility of obscuring bugs, many research projects related to FPGA de-
bug strive to keep their impact on the user design as low as possible. Most commonly, this is
done by incrementally instrumenting debug logic using only FPGA fabric that the user design has
left unused [18,23,36,38—41]. However, one disruption to the user design that is very difficult to
avoid is that debug probes must physically tie into the nets being observed. This means that probe
nets will be under the same timing constraint as the net being observed. If the net being probed is
the critical path of the design, connecting the probe introduces a strong possibility of increasing
this critical path. The entire design, when instrumented with debug circuitry, is therefore forced
to operate at a lower clock frequency, potentially obscuring bugs related to timing. The authors
of [36-39] acknowledge that inclusion of debug circuitry negatively affects the critical path of the
combined design. While this impact should only affect the combined circuit, resolving when the
debug circuit is removed, it remains a risk during the debug phase.

Hung and Wilton address this issue in some of their works. In [36], probed nets with the
least timing slack are given priority to nearby BRAM trace buffers. In [40], a novel pipelining
method is used to virtually isolate debug nets from design nets. In both projects, a trivial critical

path penalty is observed when using these optimizations.

2.2.5 DIME Debug and Related Work

DIME Debug is a trace-based embedded debug approach that shares many similarities with
those described in this section. Debug circuitry is inserted incrementally, improving design visi-
bility by keeping debug iteration time low. Incremental insertion respects placement of the user
design in order to avoid bug-obscuring changes. The primary novel contribution of this approach
is in the use of LUT-based, distributed memory for trace buffers, rather than FPGA BRAM. Until
now, no other debug research has explored distributed memory for this purpose.

Using distributed memory for trace buffers allows DIME Debug to be extremely lean and
able to target benchmarks that consume nearly all FPGA resources—as high as 94% of device LUTs.
Most similar research projects have not considered instrumenting such large designs. Hung, Eslami

and Wilton target devices that are only just large enough to hold the benchmarks being tested in
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some of their works [36, 37], however, these experiments were conducted on theoretical FPGA
devices using the academic VPR tool [42]. DIME Debug is implemented targeting a commercially
available Xilinx Ultrascale FPGA using the RapidWright toolset [7]. Hung and Wilton later use
Torc [43] to conduct experiments to maximize routing to debug trace buffers on Xilinx Virtex
FPGA [40,41,44]. The largest benchmark targeted in those experiments consumes 95% of the
sites on a Virtex 6. It is difficult to draw a comparison between site and LUT utilization, as
sites contain several LUTs. Only one LUT must be occupied to consider the site used. Of the
benchmarks instrumented with the DIME Debug tool, the largest consumes 99.3% of sites on a
Kintex Ultrascale. In addition, benchmark BRAM utilization is another important consideration.
Hung and Wilton’s tool requires as much as 75% of the device BRAM for trace buffers where
DIME Debug requires zero. The user design is able to consume up to 100% of BRAM on the chip.

Distributed memory trace buffers provide opportunities for novel methods of reducing de-
bug critical paths. Proximity between elements on an FPGA route is directly related to propagation
delay — the closer the source to the sink, the lower the delay [45]. This principle is leveraged for
DIME Debug placement. Similar to [36], the ability to connect any net of interest to any trace
buffer is leveraged. However, unlike BRAM trace buffers, LUT-based trace buffers can be placed
virtually anywhere across the FPGA. Greedy and simulated annealing algorithms are used for trace
buffer placement to minimize distance between buffers and probed signals.

Another technique employed to optimize trace buffer placement and timing is a resource
preallocation scheme. Using this method, the user design is prevented from using certain LUT
resources on the chip, ensuring they are available for debug. Preallocation improves the chances
that a trace buffer will be located very near the net it is to be tied into, minimizing wirelength
and improving critical path delay. While some moderately similar methods of prioritizing FPGA
resources for debug have been employed previously, they were intended to ensure debug logic
would fit into the device at all [39] or to reduce iteration time [46], not minimize critical path
delay. The effect of resource preallocation on FPGA debug and the user design as explored in this
dissertation has not been addressed in any prior work (with the exception of being suggested as a

possibility for future work [18,40]).
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CHAPTER 3. DISTRIBUTED MEMORY BASED FPGA DEBUG

This Chapter will thoroughly introduce Distributed Memory (DIME) Debug. This will
include our original hypothesis for DIME Debug, how DIME trace buffers are implemented and

utilized, and the limitations of this method.

3.1 Hypothesis: Utilizing Shift Register LUTs for FPGA Debug is Feasible.

The primary objective of the research presented in this dissertation is to explore the pos-
sibilities of using distributed, LUT-based FPGA memory for embedded debug trace buffers. It is
hypothesized that distributed memory can provide two primary advantages over BRAM memory
that is traditionally used for this purpose.

Availability. LUTs are a lean, abundant resource on FPGAs. There are 64,000 memory-
LUTs spread across a Kintex KU025 [47,48]. Each of them can be configured as a shift-register
LUT (SRL), allowing the LUT to act as a self-contained trace buffer. If debug control circuitry is
kept similarly lean, it would be possible to instrument these tiny trace buffers into even the largest
of FPGA designs and provide some signal visibility. Since most embedded debuggers require
significant on-chip resources, a distributed memory based debug system could enable embedded
debug on very large designs where conventional debuggers may not have enough spare resources
to fit.

While Block RAM represent a much larger memory space, there are significantly fewer
individual units on FPGA devices. In comparison to the 64,000 memory-LUTs on the KU025,
there are only 360 Block RAMs. An engineer’s design could conceivably require all of the BRAM
on the chip, but such a design consuming every available LUT is far less likely. Distributed memory
trace buffers could also enable embedded debug in memory-intensive designs where no BRAMs

are available.
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Figure 3.1: Section of KU025 FPGA with BRAM (yellow, left of image) and memory-LUT (red)
highlighted. In comparison to BRAM, LUTs are more abundant and more evenly dispersed across
the FPGA.

Proximity. The high volume of memory-LUTs on FPGAs also represent a very thor-
ough, fine grained distribution across the device. While BRAM are evenly distributed across
the chip, they are low in number and spaced far apart when compared to LUTs. On the Kintex
KUO025, BRAM are horizontally separated by 12-30 device tiles in comparison to 2-8 tiles be-
tween memory-LUTs (Figure 3.1). This becomes significant for debug because of the potential
for tight proximity between trace buffers and probed signals. As discussed in Chapter 2, tighter
proximity allows for shorter wirelengths and critical paths, keeping timing impact from debug
low. Memory-LUTs, due to their abundance and distribution in comparison to BRAM, have the
potential to be located much closer to the signals they probe.

The ubiquitous nature of LUTs presents unique opportunities for deciding where and how
to place debug trace buffers. Distributed memory trace buffers can be placed on any of many

available memory-LUT locations. Placement algorithms can be used to further optimize proxim-
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Figure 3.2: DIME Debug workflow.

ity between buffer and signal. Experiments can also be conducted to determine if giving debug
circuitry some priority over LUT resources (preallocation) improves the overall system.

The RapidWright CAD tool [7] can be used to quickly create and instrument distributed
memory trace buffers into Xilinx designs. Isolating the design and debug implementation steps

(incremental instrumentation) will allow for fast debug iteration times.

3.2 Overview of DIME Debug Flow

DIME Debug is instrumented into a design and used for debug according to the following

steps (Figure 3.2).

1. The engineer creates their design using the Xilinx Vivado Design Suite up through the place
and route steps. The engineer may complete design implementation while remaining largely
agnostic of specific debug needs, with the exception of two small pieces of generic control
circuitry that must be included. The first is a simple state machine that will be used to govern
the operation of DIME trace buffers. The second is a BSCAN primitive. BSCAN primitives
are Xilinx device blocks that allow the FPGA circuitry to communicate to the host machine
using the JTAG interface [49]. This BSCAN primitive will be used to export signal histories

from FPGA-to-host:-The state machine and BSCAN primitive are both ’generic’ in that they
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will not need to be customized based on the configuration of the debug system. This control
logic need only be inserted once, will not require recompilation during debug iterations, and

consumes minimal FPGA resources (approximately six LUTs and two flip-flops).

2. Assuming bugs exist in the implemented design, the engineer will mark design signals to be
traced and export the design. Signals are marked for debug in Vivado in the same manner
as though the Xilinx ILA was going to be used [11]. A Xilinx Design CheckPoint (DCP) is

created and exported into the RapidWright [7] toolset.

3. DIME Debug trace buffers are instrumented into the design. A Java program, leveraging
the RapidWright library, imports and analyzes the design and identifies the nets marked for
debug. For each net, one DIME trace buffer is created and placed. A new altered DCP is

created and exported.
4. The instrumented DCP is imported into Vivado. Routing is finalized and a bitstream created.

5. The combined circuit is operated on the FPGA in order to gather and view signal data.
During operation, probed data is being continuously stored in DIME trace buffers; the oldest
data is shifted out to make room for new. Once triggering has occurred, the DIME Debug
system is halted (the user design continues to operate). The engineer can then request debug
data via the Vivado command prompt. The data is converted into a waveform for viewing

and interpretation.

If debug data was insufficient to find the bug and different or additional probes are needed,
the engineer can return to the second step and repeat this process. The instrumentation flow, from
probe request up to bitstream generation, consumes 8.8 minutes on average. This time can vary,
depending on the design being tested and the number of debug probes requested, between around
4 and 14.4 minutes. Approximately 65% of this time is spent finalizing routing in Vivado (step 4,

above) and could be reduced in future work if routing was completed with RapidWright.
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3.3 DIME Debug System Details

3.3.1 Trace Buffer Composition

Each DIME trace buffer consists of only two FPGA cells: an SRL to store debug data, and
a 2-to-1 MUX for control. The MUX output is tied to the input of the SRL. One of the inputs of
the MUX will be connected to whichever design net is being probed, while the other is tied into
the rest of the debug system. Specifically, this second MUX input is tied to another DIME trace
buffer pair. In this way, all trace buffers in the system can be configured into a single chained shift

register (Figure 3.3).

SHIFT + SEL SHIFT - SEL
SRLO SRL1
> To next trace
0 o > o buffer pair
D 2to1 D
Probed_Net0 Probed_Net1
clk —>»p> clk —»>
SM_output —»{ EN SM_output —» EN

Figure 3.3: Chained DIME trace buffer pairs

The chain terminates at the BSCAN primitive inserted alongside the user design and is
used to serially retrieve recorded signal histories. The MUX is switched by JTAG signals from
the BSCAN primitive. The SRL is clocked using the same user clock that drives the signal being
probed. However, the SRL clock enable signal is driven by the state machine inserted alongside

user circuitry. These control signals are described in more detail in the following section.

3.3.2 Debug System Control

In order for signal data to be accurately recorded and later observable, a debug system
needs more than memory. The system also needs control logic to send commands to the trace
buffers and later send signal data to the engineer at the host machine.

As mentioned in the previous chapter, embedded logic analyzers typically employ either

a scan-based or trace-based approach. A hybrid approach was originally considered for DIME
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Debug. After signal data had been captured in distributed-memory trace buffers, readback could
be used to bring that data to the host machine without any additional circuitry being added to
the design. This technique was considered in order to minimize debug resource overhead, since
leanness is one of the primary advantages of DIME Debug. However, it was discovered that Xilinx
readback does not provide visibility to the contents of a LUT that has been programmed as an SRL
and therefore not feasible. Instead, a run-time system is needed to properly deliver the contents
of an SRL to the host. The state machine and BSCAN primitive implemented during the initial
design phase are used for this purpose.

Figure 3.4 gives a visual overview of the DIME Debug control system. Note that signals
SHIFT, SEL, and DRCK are standard JTAG interface signals that are outputs of the BSCAN prim-
itive. SEL asserts high to indicate that this particular BSCAN primitive is the one being addressed
by the JTAG system (as there are multiple present on the FPGA). SHIFT is asserted high when the
JTAG chain is receiving serial data via the BSCAN input, TDO. DRCK is the clock operating the

JTAG system. These signals respond to commands sent to JTAG from the host via Vivado.

SHIFT = SEL SHIFT - SEL

USER LOGIC STATE MACHINE

trigger

Figure 3.4: Visual overview of an entire two-probe DIME Debug system

The DIME Debug system has two operating modes: run mode and debug mode.
Run mode. This mode is, essentially, standard operating mode. No debug actions have yet

taken place since the trigger has not been asserted. The design is operating at speed and probed
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Figure 3.5: DIME Debug control state machine diagram

signal data is being constantly collected into the SRLs and disposed of in first-in, first-out fashion.
The state machine is held in reset. SRLs are constantly clock enabled so long as the trigger has not
fired. MUX select signals remain low, such that design data is passed into SRLs, since no BSCAN
commands are received from the host.

Debug mode. Once the trigger has fired, the system enters debug mode. Data recording is
halted and signal histories are available to be passed from the FPGA to the host for observation.
Once requested by the host via JTAG commands, signal histories will be transmitted through the
BSCAN primitive.

The primary function of the state machine is to ensure recorded data is passed to the JTAG

chain at the correct clock speed (Figure 3.5). SRLs are clocked at user speed. In run mode, they
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are constantly enabled and can record data at user clock speed. However, the JTAG clock is several
times slower than the user clock. The state machine is also clocked by the user clock, but uses the
JTAG clock as an input. For each rising edge of the JTAG clock, the state machine will activate the
SRL clock enable signal for the duration of a single user clock period. Since the SRL uses the user
clock for its own clock signal, this allows it to effectively cross the clock domains and pass data at

the rate of the JTAG clock. A waveform depicting these clock relationships is shown in Figure 3.6.

user clk | | | | | | | |
DRCK | | |
5M_out .

Figure 3.6: Waveform comparing JTAG clock (DRCK) to state machine output.

The Vivado command line is used to send instructions to the on-chip JTAG chain (though
any command line tool capable of interfacing with a JTAG chain could be used for this step). These
instructions are manifested on the FPGA circuitry as BSCAN signals. The debug system responds
to these commands by activating the state machine, chaining together all trace buffer SRLs (by
configuring the MUXs), and serially passing recorded data to the BSCAN primitive. This data is
received at the host in binary format, which is processed by additional scripting commands in order
to create a Value Change Dump (VCD) file. Knowing the order in which SRLs are chained makes
it possible to identify individual trace histories by signal name. The VCD is then converted into a

visual waveform with any software that supports the format, such as ModelSim [50].

3.3.3 Creation and Instrumentation of DIME Debug

To instrument DIME Debug independently from the rest of the user design, an incremental
implementation method is needed. The Xilinx Vivado Suite includes a few options, such as an
incremental compilation method and a set of command line tools in the TCL language. However,
both of these options execute too slowly for many of the possible benefits of DIME Debug to be

realized. Instead, the open-source Java based CAD tool RapidWright [7] is used.
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RapidWright is capable of altering Xilinx Design Checkpoints (DCP), giving backend ac-
cess to much of the same functionality available in Vivado. These alterations can be done in a
fraction of the time needed to do the same operations with TCL commands or standard implemen-
tation methods. Once a user design has been placed and routed, a DCP is created and imported into
RapidWright. RapidWright represents the various parts of the design (such as cells, nets, even the
design as a whole) as Java objects. These objects can be analyzed and manipulated at a software
level. For further information, complete RapidWright documentation is available online [51].

In the case of instrumenting DIME Debug trace buffers, the RapidWright program iterates
through the list of nets that have been marked for debug. For each one, two design cells are created.
The first cell is programmed as a 2-to-1 MUX. It is placed into the design on an unused LUT as
close as possible to the source of the signal being probed. The second cell is programmed as an
SRL and is placed as near as possible to the MUX. Netlist entries are created tying the MUX to the
signal being probed, the SRL to the MUX, and both to other control and clock signals (as shown
in Figure 3.3). Once all debug probes have been placed, a new altered DCP is saved. The entirety
of the RapidWright phase is completed in an average of 3 minutes. Additional details about DIME
Debug instrumentation with RapidWright can be found in Appendix A.

After trace buffers are placed and netlist entries are created with RapidWright, Vivado route
is used to complete instrumentation. Existing route rip-up is allowed if necessary to meet timing
constraints. RapidWright is capable of more quickly finalizing design routing, however, Vivado is
used for simplicity as routing is not the primary focus of this project. The Vivado router is more
powerful than the basic tool currently available in the RapidWright library and a more advanced

RapidWright router is saved for future work.

3.3.4 Proof of Concept

DIME Debug can be instrumented and provide signal visibility on currently available Xil-
inx FPGAs. As an initial proof of concept, this tool is used to observe the output of a simple 4-bit
counter. The correct functionality of the counter was verified with the Xilinx ILA before attempt-
ing to observe the same signal with DIME Debug. The waveform captured with DIME Debug is

shown in Figure 3.7.
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Figure 3.7: Waveform produced by a 4-bit counter observed with DIME Debug.

3.4 Limitations

As with any debug system, DIME Debug faces several limitations. Some of these limita-

tions are addressed within this dissertation while others are left for future work.

34.1 Timing Impact

An inherent part of embedded debug is physically probing the signals in question to observe
if behavior i1s as expected. This requires additional circuitry to be connected to important routes
in the user design, and can cause the timing of those routes to be altered. Altering the timing
constraint of a design has the potential to create new bugs and/or hide existing ones.

DIME Debug typically introduces a minimum critical path in the 6-8ns range that increases
with higher numbers of probes. Benchmarks already operating at maximum clock speeds in this
range suffer mild slowdown with debug circuitry in place. However, designs with faster clock peri-
ods were forced to slow down the design clock as much as 5X in order to meet timing constraints.
Further details about this timing impact are discussed in Chapter 5. Reducing this penalty is one
of the goals of the enhancements discussed in Chapters 6 and 7. Further reduction of timing issues

is a subject of future work.

3.4.2 Trace Buffer Depth

Many thousands of signal changes are happening in any given second even on the slowest
of FPGA designs. When debugging, the more of this signal data that can be made visible, the
better. DIME Debug is a very lean tool able to debug very large FPGA designs, but this comes
with the trade-off of short trace buffer depth. The initial version of DIME Debug buffers are only

capable of storing 16-bits of signal history. Alterations to trace buffer composition, discussed in
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Chapter 8, are used to demonstrate a depth increase to 256-bits at the cost of fewer probes. This

method can be used to further increase depth in future work.

3.4.3 Triggering

A critical part of any debug system is cueing trace buffers to begin storing signal data.
Memory is finite and the most important data must be identified for storage—particularly consid-
ering the depth limitation of DIME trace buffers. However, one of the most significant obstacles
for DIME Debug in becoming a full-fledged debug tool is the current lack of advanced trigger-
ing options. For our experiments, a signal from the user design is selected to act as a trigger
when asserted. Simple LED indicators or additional BSCAN primitives are used to provide trigger
visibility to the host and ensure debug data is not requested until triggering has occurred. More ad-
vanced triggering methods would be a vital part of a future robust DIME Debug system. Potential

solutions are discussed in the Future Work section of Chapter 9.
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CHAPTER 4. DIME DEBUG FEASIBILITY STUDY

This chapter will describe the preliminary experiments used to test the capabilities of DIME
Debug. These experiments are used to find out if DIME Debug can feasibly be used to probe nets
in highly utilized designs. The same experiments are conducted with the Xilinx Integrated Logic
Analyzer [11] and results compared. All experiments target the Xilinx Kintex Ultrascale KU025
FPGA [47]. This FPGA model was selected because Ultrascale devices were among the first to
be supported by RapidWright, however, any Xilinx FPGA supported by RapidWright could be
instrumented with DIME Debug. Xilinx Vivado version 2017.3 is used for experiments in this

chapter as well as the remainder of this dissertation.

4.1 Experiment Details

4.1.1 Benchmark

In order to test the efficacy of DIME Debug on large designs, large benchmarks are needed.
Partially due to some difficulties with RapidWright!, it was found to be very challenging to procure
or create a single design that was both adequately large and suited for our experiments. Instead, a
small module is used to create a larger design. The small module is duplicated many times within
the design, resulting in a single large benchmark.

Benchmarks created with duplication come with the advantage of being easily grown or
shrunk to reach certain thresholds of device utilization. An LC3 processor [9] is used as the module
for the benchmarks experimented on in this chapter. The LC3 processor was duplicated on-chip

enough times to reach KUO25 LUT utilization thresholds of 70, 80, and 90 percent.

Using RapidWright to modify designs with extensive hierarchy is a major endeavor outside of the scope of this
research. The hierarchy of most easily accessible IP and FPGA design modules cannot be flattened.
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4.1.2 Variables

In order to test the hypothesis in a robust manner, experiments will be repeated while
making adjustments to a variety of variables, listed below.

Embedded Logic Analyzer. This is the primary comparison being made in these ex-
periments. The two embedded logic analyzers being compared are the Xilinx Integrated Logic
Analyzer (ILA) and the Distributed-Memory (DIME) Debug tool presented in this dissertation.

Benchmark LUT Utilization Percentage. Embedded logic analyzers require a certain
amount of the FPGA logic left unused alongside the user design. The larger the user design, the
fewer leftover resources. It is expected that larger benchmarks will be able to accommodate fewer
debug probes than smaller benchmarks. The design utilization thresholds that will be experimented
on are the aforementioned LC3 benchmarks that utilize 70, 80, and 90% of the LUTs, respectively.

Debug Probe Count. During FPGA debug it is probable that many design signals will
need to be observed in order to track down a bug. However, each additional probe means more
logic consumed and more routes that may introduce higher critical path delays. It is expected for
instrumentation success rates to fall as higher numbers of probes are requested. The number of
probes that will be requested will start at a reasonably low value, determined based on benchmark
size, and raised in even intervals for additional experiments.

Design Net Selection. Probe count is not the only aspect of debug probes that must be
considered. The selection of design nets to be observed by these probes is important as well. This
is because net selection can have an impact on critical path. For example, if the source of a net of
interest is located in a more sparsely utilized area of the implemented design, it is more likely that
leftover logic for debug circuitry will be found nearby this net. The routing path from net to trace
buffer will be shorter and less likely to increase the critical path of the instrumented design.

FPGA designs typically have hundreds or thousands of signals, making full coverage of
net selection infeasible for these experiments. Instead, a reasonably large number of random net
selections will be used. While controlling for logic analyzer, LUT utilization, and probe count,
each experiment will be repeated 200 times. A new random set of nets will be targeted for debug
in each of these repetitions. These repeated experiments will reveal an average rate of success,
given the controlled variables, regardless of net selection. Two hundred repetitions was determined

through trial and error.to.be sufficient for reasonably consistent results.
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4.1.3 Execution

The Brigham Young University supercomputer [52] is used to complete all steps of these
experiments in a timely fashion. A series of Bash and Tcl scripts are used to send jobs to and in-
teract with the supercomputer, keeping experiments and the results thereof organized. Completion
time will be logged for each experiment in addition to instrumentation success or failure.

Experiments are executed in the following steps.
1. Benchmark and probe count are selected.

2. A random selection of nets within the benchmark is made, equivalent in number to probe

count.

3. Xilinx ILA instrumentation is attempted using Vivado incremental implementation tech-

niques, targeting the selected nets.

4. DIME Debug instrumentation is attempted using RapidWright and Vivado incremental route,

targeting the selected nets.
5. Steps 2-4 are repeated a total of 200 times.

6. Steps 1-5 are repeated for each benchmark and probe count configuration.

4.2 Results

The resulting implementation success rates from these experiments are charted in Figures
4.1, 4.2, and 4.3. A bar that reaches 100% indicates that implementation succeeded for all 200
randomized probe net selections with the given parameters of benchmark, logic analyzer, and
probe count. Complete lack of bar indicates that none of the experiments succeeded with those
parameters, regardless of net selection.

At 70% utilization (Figure 4.1), a very high number of probes can be instrumented using
either debug method; around a 600 probe cutoff for the ILA, while DIME Debug maintains success
>50% up to 1500 probes. When 80% of LUTs are utilized (Figure 4.2), up to 240 ILA probes can
be instrumented, and for DIME Debug, success remains above 50% up to 900 probes. The most

significant.results.are.seen-at-90% LUT utilization. The Xilinx ILA cannot be instrumented into
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this design even at the lowest probe count of 12. DIME Debug was able to probe up to 144 nets
with a high success rate.

There are two primary causes for implementation failure in these experiments. The first
is failure to meet timing constraints. This failure is seen in the charts when success rates decline
gradually as higher probe counts are requested. At higher probe counts, it became more and more
likely that debug net selection created an adverse impact on the critical path delay of the design and
caused timing failure. Timing failure is mostly seen from experiments with DIME Debug, though
it can also be seen with a few ILA experiments on the 80% utilized benchmark. This is likely due
to the ILA having more refined timing optimizations than DIME Debug, particularly at this early
stage of DIME Debug’s development.

The other common type of failure is from resource exhaustion. This is indicated by a
sudden drop of success to zero as probe counts increase. This is seen for the Xilinx ILA on the 70
and 80% utilized benchmarks (above 600 and 240 probes, respectively), and for DIME Debug on
the 90% utilized benchmark (above 144 probes). This is discussed in more detail in Chapter 5 and
partially mitigated for DIME Debug in the preallocation experiments of Chapter 6.

Implementation time was recorded for each successful experiment. For this set of exper-
iments, DIME Debug instrumentation is at least 2.8x faster than ILA instrumentation on average
(see Table 4.1). Unlike the ILA, DIME Debug does not require re-implementation of the entire

design in order to instrument debug circuitry.

Table 4.1: Average instrumentation time for DIME Debug and ILA across all probe counts.

Average Time of Successful Instrumentation (minutes)
Design LUT density DIME Debug Xilinx ILA
70% 12 76
80% 15 42
90% 14.5 N/A
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Figure 4.1: Outcomes for Experiments on a 70% Utilized LC3 Design.
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Figure 4.2: Outcomes for Experiments on a 80% Utilized LC3 Design.
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Figure 4.3: Outcomes for Experiments on a 90% Utilized LC3 Design.

4.3 Conclusion

The results of the experiments in this chapter successfully demonstrate that DIME Debug
can feasibly be used to enable signal observability into a design that is too large to accommodate
the Xilinx Integrated Logic Analyzer. For the smaller benchmarks where the ILA was able to be
instrumented, higher numbers of probes could be instrumented when using DIME Debug. DIME
Debug instrumentation is also completed in under 15 minutes on average by leveraging Rapid-
Wright, several times faster than ILA instrumentation. The primary advantage of the ILA in these

Each DIME Debug probe has a depth of 16-bits where the ILA
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probes provide 1024-bits of signal history. Extending the depth of DIME trace buffers is explored
in Chapter 8 of this dissertation.

An interesting result shown in these experiments is the tapering off of DIME Debug success
rates as higher numbers of probes are requested (most noticeable in Figure 4.1). This indicates that
the higher the probe count, the more success becomes dependent on net selection. The failed tests
in these situations are timing failures, emphasizing the importance of net selection in maintaining
a low critical path delay. Timing constraint is not a variable of these experiments and was kept
at a constant 10ns (100MHz). This constraint was used when creating the benchmarks, as well.
Further exploration of timing constraint and its impact on DIME Debug is explored in the following
Chapter of this dissertation. Enhancements to DIME Debug to improve timing results are presented

in Chapters 6 and 7.
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CHAPTERS. DIME DEBUG IMPACT ON TIMING CLOSURE

Chapter 4 showed the feasibility of using DIME Debug in large FPGA designs, however,

design timing constraint was not considered as a variable in those experiments. This chapter will

discuss how instrumenting a DIME Debug system affects the timing closure of designs and present

experiments to quantify this impact.

5.1 On-Chip Debug Timing Impact

Any additional circuitry added to an FPGA runs the risk of increasing the complexity of the

design and reducing performance. This is especially true of an embedded logic analyzer since it

will need to be physically tied to important design signals (Figure 5.1). This fan-out may increase

the propagation delay of the route, forcing the user clock that drives the signal being probed to

operate at a lower frequency. Changing the timing characteristics of the design can force additional

timing closure effort or hide bugs.

5

DIME
SRL

Figure 5.1: Long debug routes like the red one in this diagram can become the critical

path of the design.
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It is hypothesized that using memory LUTSs as debug trace buffers reduces this risk in
comparison to BRAM trace buffers due to the ubiquitous nature of LUTs on FPGAs. One factor
that plays into propagation delay is wirelength. Unlike BRAM, which are fixed in a few sparse
locations on an FPGA, LUTs can be found in many locations, possibly very close to the signal
of interest. A shorter path between buffer and design signal decreases the chance of modifying
the timing characteristics of the route. This chapter will explore the timing penalty incurred from

instrumenting DIME Debug into benchmark designs.

5.2 Testing Timing Impact

The previous chapter of this dissertation demonstrated that DIME Debug can be instru-
mented into designs when a commercial logic analyzer failed. However, minimal context was
provided as to how the timing of those designs was affected, since the same, somewhat relaxed
10ns constraint was used in all cases. In this chapter the impact on design critical path incurred
from instrumenting DIME Debug will be investigated. This will be done by repeating the experi-
ments of Chapter 4, but adding a new variable: timing constraint. Instead of a single constant clock
period across all experiments, the clock period will be swept.

In order to provide results for a diversity of designs, an additional four benchmarks will
be tested along with the LC3 benchmark used in the previous chapter. The range of clock periods
tested will vary based on benchmark. First, each benchmark’s baseline clock period will be found.
The baseline is the fastest timing constraint that can be used while successfully implementing the
design and meeting timing closure prior to instrumenting debug circuitry. Baselines will be found
through trial and error. Implementation will be repeated while lowering (speeding up) the clock
constraint in 0.1ns intervals. The last clock constraint used prior to timing closure failure will be
considered the baseline.

Experiments will then be conducted beginning with a clock constraint rounded down to
the nearest nanosecond, slightly faster than the baseline. The clock period will then be increased
(slowed) by 1ns and experiments repeated. The clock period will continue to be increased by
Ins and experiments repeated until further slowing the clock no longer improves implementation
results. This broad sweep of clock constraints will provide a quantification of the impact DIME

Debug has-on.the critical- path.delay of the benchmarks.
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All benchmarks will be created in Vivado with the aforementioned baseline fastest possi-
ble clock period that allows implementation to complete and timing to be met (these values are
provided in Table 5.1 below). The LC3 benchmark used in Chapter 4 was created using a slower
10ns clock constraint which resulted in different success rates than seen in this chapter. Note also
that only benchmarks with LUT utilization greater than or equal to 90% will be presented and
discussed moving forward. This is because results of experiments on smaller benchmarks either
track closely to the results on 90%+ utilized benchmarks or, for some optimization experiments,
show no noteworthy improvement. The primary focus of this research is embedded debug on the
very largest of designs and experiments are designed for that case.

As in Chapter 4, each experiment maintains the same number of probes, clock speed, and
LUT utilization while being repeated 200 times. Each of these repetitions will target a different,
random set of nets to be probed. In this way, these results show overall likelihood of success of a

certain configuration regardless of nets selected for debug.

5.3 Results

Results of all experiments are shown in Figure 5.2. The sets of 200 experiments that rep-
resent a single timing constraint are clustered together in each colored bar of a chart. If the bar
reaches 200, that means 100% of experiments with that configuration of variables were success-
ful. Note that some experiments using clock constraints that offered no additional insight have
been removed; only one clock period on the fast end that results in zero successful experiments is
shown, as well as only one or two clock periods on the slow end that result in 100% success (for
experiments where 100% success was achieved).

These experiments provide further insight into the two primary factors that prevent imple-

mentation of the instrumented design: timing constraint and device resources.

5.3.1 Timing Constraint

One observation from these results is a minimum propagation delay of the instrumented
DIME Debug circuitry. This can be seen by comparing the baseline clock period of each bench-

mark to the fastest clock period successfully implemented in these experiments (Table 5.1). De-
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pending on the benchmark, designs instrumented with DIME Debug have a minimum critical path
of 6-8ns. This only requires a minor clock slowdown when instrumented into benchmarks that
were already operating near this period, however, this forces as much as a 5X slowdown in or-
der to meet timing on benchmarks that could operate at much faster clock periods without debug

circuitry.

Table 5.1: Comparison of minimum clock period before and after DIME trace buffers are instru-

mented.
Minimum Clock Period

Benchmark Baseline Instrumented Penalty

LC3 (90%) 6ns (166.7MHz) 7ns (142.8MHz) Ins (17%)
sudoku (94%) ns (142.8MHz) 8ns (125MHz) Ins (14%)
RNG (90%) 1.6ns (625MHz) 8ns (125MHz) 6.4ns (500%)
uFIFO (90%) 3.7ns (270.3MHz) Tns (142.8MHz) 3.3ns (190%)
RPulseG (90%) 1.6ns (625MHz) 6ns (125MHz) 4.4ns (375%)

The timing penalty grows beyond this minimum as higher numbers of DIME trace buffers
are requested. This can be easily seen, for example, when observing the results of a 7ns timing
constraint on the uFIFO benchmark (red bar on Figure 5.2 (d)). Success begins very high at 110
probes, drops to around 50% success from 220-660 probes, and drops again to near-zero at 770

probes. A similar trend is observed on numerous clock periods for most benchmarks.

5.3.2 Device Resources

In addition to falling success rates due to timing constraint, resources left available on the
FPGA become a limitation at a certain point. This cutoff can be seen in results for all benchmarks,
when the highest number of probes is requested (probe counts were intentionally increased until
complete failure). At this point, the device no longer has enough unused LUTs that can be used
for DIME trace buffers.

There is a discrepancy here that should be noted. The Kintex Ultrascale KU025 is a very
large FPGA with 145,440 LUTs in total. A design using 90% of this resource leaves behind 14,544
unused LUTs. DIME trace buffers require two LUTs each. Theoretically, a 90% LUT utilized

design could still host 7,272 DIME trace buffers. While that count is unlikely to be reached even
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in ideal circumstances (due to other limiting factors such as routing etc.), it is still over 3x greater
than the maximum of 2100 we see in these experiments. There are two probable reasons for this
discrepancy.

The first is that each DIME trace buffer requires one memory LUT and one non-memory
LUT. When these benchmarks were created, the 90% utilization figure included both of these types
of LUTs. Not only can memory LUTSs be used as standard LUTs in the user design, but there are
also somewhat fewer memory LUTSs on the KU025 than non-memory. Thus, of the remaining 10%
of LUTs left unused on a 90% utilized FPGA, it is possible for less than half of those remaining
LUTs to be the memory type. This would restrict the number of DIME trace buffers that could be
instrumented, even if additional non-memory LUTSs were available.

The second, and likely more significant, reason is that LUTs are not perfectly packed into
FPGA sites during implementation of the original design. While each site contains eight possible
LUTs, it is very common for fewer than that to be implemented within any given site. Out of
concern for inordinately affecting the circuitry of the user design, the DIME Debug instrumentation
tool is restricted from placing trace buffers onto sites that are partially used by user design logic.
Thus, of the 10% of LUTs left unused on the FPGA, a high number are likely to be within sites
that are partially used by the user design and therefore not available for DIME Debug. A LUT

preallocation scheme intended to alleviate this issue is presented in Chapter 6 of this dissertation.

5.4 Conclusion

Instrumenting DIME trace buffers into a design, as with most embedded logic analyzers,
comes at a penalty to the minimum clock period of the design. Even with relatively few probes
requested, DIME Debug introduces a critical path delay of 6-8ns. This penalty increases as higher
probe counts are requested. A slower clock period can have significant consequences to a design
being debugged, such as obscuring the issues the engineer is attempting to track down.

The results of these experiments also reveal that the maximum number of trace buffers that
can be instrumented, regardless of clock constraint, is far fewer than could be theoretically placed
based on the number of LUTs left unused on the FPGA due to placement limitations.

In consideration of these limitations, optimizations to DIME Debug implementation are

presented-in-the following.Chapters 6-8 of this dissertation.
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CHAPTER 6. PLACING DIME DEBUG TRACE BUFFERS INTO USER CIRCUIT

DIME Debug provides valuable debug functionality in being able to probe signals on very
large user designs. However, when instrumented, it also presents a critical path delay that forces
the combined user and debug circuit to operate at a slower clock frequency than the user design
alone. This may be unacceptable and it is desirable to mitigate this penalty.

Computing the exact propagation delay of any given route before it is implemented is chal-
lenging, however, there are contributing factors that can be considered. One factor that plays a
large role is the length of the route [45]. This chapter presents three approaches used to lower

DIME Debug critical path delays by reducing distance between elements.

6.1 Greedy Placement

The experiments presented in this dissertation up until this point have used a greedy place-
ment algorithm. A greedy algorithm is a first come, first served heuristic that always takes locally
optimal choices during problem solving [53]. A greedy algorithm may not find a globally optimal
solution, however, it is simple to implement, runs quickly, and may still find a good solution.

When deciding placement of DIME trace buffers, the objective of the algorithm is to min-
imize wirelength. Wirelength is assumed to be directly correlated with Manhattan distance from
source to sink. When the MUX of a DIME trace buffer pair is created, it is placed on the closest
available non-memory LUT to the source of the net being probed. The DIME SRL is then placed
on the closest memory LUT to the MUX. Placement order and priority is determined simply by
the order in which nets were requested for debug.

A greedy approach is far from ideal for this application. For a simple example, consider the
layout of sources (1 and 2) and leftover LUTs (A and B) in Figure 6.1. With a goal of minimizing
Manhattan distance, greedy placement will decide that leftover LUT A, because it is closest, is the

best place for a MUX that will be tied to Source 1. Source 2, instrumented after Source 1, will
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Figure 6.1: Sources to be probed in order (1 and 2) and available LUTs (A and
B) that will result in sub-optimal placement using greedy algorithm.

end up being tied to a MUX placed on LUT B. The average Manhattan distance of these routes is
(1+5) / 2 = 3. Even though this average would be reduced to (1+3) / 2 = 2 if the configuration was

swapped, a greedy algorithm has no way of finding this globally optimal solution.

6.2 Probabilistic Placement with Simulated Annealing

Greedy placement was effective for demonstrating that DIME Debug can be instrumented
into large designs. However, as shown, greedy algorithms easily fall short of an optimal solution.
In order to further optimize the critical paths in a DIME Debug system, an algorithm that can see
beyond local optima is needed.

Simulated annealing is an approach well suited to this problem. Annealing is a probabilistic
heuristic that approximates a global optimum with a broad exploration of the search space [54].
The name is taken from annealing principles in metallurgy, which provide a metaphor for the
algorithm. A greedy algorithm iterates over the search space only once and takes moves that are
optimal at the time they are analyzed. In contrast, a simulated annealing algorithm will iterate
over the search space many times at random, attempting swaps. At each step, swaps that improve
the solution will be taken. However, moves that weaken the solution also have a chance of being
taken. The search begins at a high temperature’ that lowers over time. The higher the temperature,
the higher the chance the algorithm will accept a poor move. Allowing poor moves to be accepted
broadens the search space. A poor move may result in a much stronger move later, a stronger move

that may not have been discovered in only accepting locally optimal moves.
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Figure 6.2: The greedy hiker unwilling to search from higher peaks does not
see the lower valley on the left side of the mountain range.

A common metaphor for simulated annealing is that of a hiker seeking the lowest valley in
a mountain range. A greedy hiker would look around his current location, find the lowest valley
in sight, and accept it as the lowest valley in the mountain range (Figure 6.2). A hiker familiar
with simulated annealing will recognize that the lowest valley may not currently be in sight. It is
necessary to first seek after the highest peaks, the opposite locations of where he would like to end
up, in order to see the lowest valleys. The hiker will have the most energy to do this early on in his
search. Once he has too little energy to continue the search, he settles on the lowest valley that he
has spotted so far. It may not be the lowest valley in the range, but he substantially increased his
odds in comparison to the greedy hiker that decided on the first valley he saw.

Now let us put this in the context of FPGA placement with another example using Figure
6.1. The greedy algorithm decides on a placement where Source 1 is tied to LUT A and Source
2 is tied to LUT B. If a simulated annealing algorithm is applied, a solution where Source 1 is
tied to LUT B might be explored. This move increases the Manhattan distance of the route from
one to three, however, if the algorithm is at high energy, the move may still be taken. LUT A
is now available for Source 2. The algorithm has found the optimal solution, resulting in a 50%
reduction of average Manhattan distance. This example is somewhat more simplistic than the
actual approach used for DIME Debug placement, but adequately demonstrates how simulated
annealing can improve proximity between elements.

For DIME Debug, after an initial placement is decided with the greedy algorithm, the

following steps will be taken to incorporate simulated annealing.

1. Determine the initial average Manhattan distance between all source-to-MUX and MUX-to-

SRL connections.
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2. Initialize a reasonable starting temperature.
3. Randomly select either two random SRLs or two random MUXSs within the debug system.

4. Determine if swapping the location of these two elements would increase or decrease the

average Manhattan distance of the system.

5. If decrease, make swap. If increase, decide whether or not to make swap based on current

temperature.
6. Perform predetermined number of repetitions of steps 3-5.
7. Lower temperature.

8. Repeat steps 3-7 until average Manhattan distance has not changed in many iterations.

The initial temperature, number of repetitions, and other algorithm settings that produce

the best results are determined through trial and error.

6.2.1 Testing Simulated Annealing

To test the hypothesis that lower average Manhattan distance reduces critical path delays
in the circuit, the experiments described in Chapter 4 are repeated with simulated annealing place-
ment incorporated. A sweep of timing constraints and probe counts is tested on all five benchmarks.
Each configuration is repeated 200 times while altering the set of nets targeted for debug. Charted
bars thus represent an approximate average success rate given each configuration regardless of

design nets probed.

Results

Complete results are charted in Figure 6.3. For ease of comparison, results from a sin-
gle representative clock period are charted against previous results using the greedy algorithm in
Figure 6.4.

Using the simulated annealing based placement method increases success rates overall for

three of five benchmarks. Significantly more probes can be instrumented into the LC3 and RPulseG
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benchmarks while maintaining the same clock rate (Figure 6.4, (a) and (e)). Faster clock rates were
enabled at low probe counts on the RNG benchmark (Figure 6.4, (c¢)). The sudoku benchmark
experienced only minimal and mixed changes, while the uFIFO benchmark experienced a marked
decrease in success rates (Figure 6.4, (b) and (d)).

The mixed results from this experiment are likely due to the various shortcomings of simu-
lated annealing algorithms. Simulated annealing is a probabilistic heuristic that does not guarantee
an optimal solution. Even in ideal circumstances it is possible for the algorithm to produce a poor
result. While a reasonable effort was put into configuring the algorithm for DIME trace buffer
placement, finer tuning of temperature, repetition count, etc. may result in even better results.
Parameters used for these experiments were tuned via trial-and-error on the LC3 benchmark. Cus-
tomizing these parameters for each benchmark individually is likely to provide optimal results and
is saved for future work. Investigation into the poor results seen on the uFIFO benchmark, in par-
ticular, would be of interest. This benchmark provided unique results in other experiments of this
dissertation as well. The characteristics of the uFIFO benchmark were explored in an effort to find
the cause of this and other anomalies, however, no strong cause was found and further exploration
is saved for future work.

Additionally, the objective function used during simulated annealing could use improve-
ment. The goal of the placer is to minimize average Manhattan distance between debug elements.
Even if successful in this objective, timing results may not always improve. While reducing dis-
tance between elements has been shown to improve propagation delay, it is not the only contribut-
ing factor and this outcome is not guaranteed. In addition, reduction in average Manhattan dis-
tances may actually result in a solution with a single, lengthy, high-propagation-delay path being
left in the solution. Future work with simulated annealing includes an altered objective function
that factors in worst-case Manhattan distance, which is more likely to have a direct impact on
design critical path.

Another noteworthy observation of these results is that simulated annealing did not sub-
stantially improve the 6-8ns baseline critical path of DIME Debug. The RNG benchmark did
observe approximately 50% of experiments at a 7ns clock period with low probe counts succeed.

For other benchmarks, no improvement is seen to this baseline—the fastest clock period reached
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is unchanged from the results presented in Chapter 5. Further optimizations will be necessary to

eliminate this minimum penalty.

6.3 Preallocating FPGA Resources for DIME Debug

In Chapter 5, a large discrepancy was observed between the number of DIME trace buffers
that can be instrumented into a design and the number of remaining unused LUTs on the chip.
It was hypothesized that a factor in this discrepancy is unused LUTs residing in locations of the
FPGA (sites) already partially used by the user design. The DIME Debug instrumenting tool avoids
such locations in an effort to avoid changing the functionality of the user design (this policy was
adopted under advisement from Xilinx Labs; see Future Work section of Chapter 9). This section
describes a possible alternative method to work around this limitation. Rather than try to place
trace buffers in partially used locations, these experiments aim to increase the number of entirely
unused LUT locations.

This will be done by preallocating some FPGA resources for DIME trace buffers before
the user design is implemented. Design constraints will be used to prevent user logic from occu-
pying these resources. The preallocated sites will then be entirely available for debug logic. The
resources that are preallocated will be selected such that DIME Debug trace buffers can easily take
advantage of them. In addition, the distribution of these preallocated sites may impact timing clo-
sure of the final combined circuit. If preallocated sites can be located such that proximity between
user signals and trace buffers is improved, critical path delays may be reduced.

This section will describe the preallocation scheme used and discuss the impact prealloca-

tion has on both the user design and the DIME Debug system.

6.3.1 Preallocation Scheme

Three primary factors were considered in deciding how to preallocate FPGA resources for
DIME Debug: type, quantity, and location.

Resource Type: A DIME trace buffer requires two LUTs, one of which must be memory
capable. Since the non-memory LUT (acting as a 2-to-1 MUX) will tie directly into the memory

LUT (the SRL holding probed data), these LUTs would ideally be placed very near one another to
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Figure 6.5: A Vivado device view showing preallocated sites (small red dots in upper-right image)
and close-up view of adjacent preallocated LUTs.

reduce routing complexity. To this end, the preallocation scheme will always target pairs of LUTs
— one memory, one non-memory — adjacent to one another (see detailed view of Figure 6.5). When
DIME Debug is being instrumented into the design, the placement algorithm is highly likely to
find these adjacent locations and place the LUT duos together whenever possible.

Resource Count: The preallocation scheme will need to be crafted such that it improves
the ability to debug while not excessively affecting the engineer’s design. Too many preallo-
cated sites will excessively limit the user design, while too few will be unlikely to improve debug.
Through some trial and error, it was found that preallocating approximately 1% of all memory
LUTSs on the FPGA, each paired with an additional adjacent non-memory LUT, strikes a good bal-
ance. Preallocating fewer LUTs provided little benefit to debug, while preallocating many more did
eventually begin to cause implementation failures of the pre-debug benchmark. It will be demon-
strated that, with ~1% of LUTs preallocated, the user design is virtually unaffected and positive
results are seen for debug purposes.

Preallocated Locations: Poorly distributed preallocation sites would likely have no pos-

itive impact on debug and may increase the chance of negatively affecting the design under test.
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In order to create a scheme that has the greatest chance of being universally beneficial, regardless
of benchmark or net selection, an evenly patterned distribution is used. Preallocated sites will be
evenly spaced apart across the entire FPGA (see zoomed-out view of Figure 6.5). Since nets of
interest can be located anywhere on the chip, an even distribution gives all nets an equal chance of
having an available LUT relatively nearby to act as a trace buffer.

LUTs are preallocated using the Vivado PROHIBIT constraint. The PROHIBIT constraint
is used on physical sites of the FPGA device to disallow Vivado implementation from placing any
design logic on that site [55]. A TCL script is used to iterate over all LUTs in the KUO025. Every
100th time a pair of adjacent memory- and non-memory LUTs is found, PROHIBIT constraints
are created in text form. The resulting list of constraints can be easily saved and placed in the
constraints file of the user’s Vivado project. While the TCL script is time consuming to execute,
the constraints can be re-used each time an engineer wishes to target the same FPGA. Adding these
constraints is the only step the engineer will need to take before design implementation in order
to implement this preallocation scheme. Vivado will ensure the sites with the constraint are left
unused and available to be later found and utilized for debug. The place step within the DIME
Debug instrumentation tool already seeks out unused logic for trace buffers and will require no
modification to take advantage of the preallocated resources.

Different preallocation schemes, such as higher numbers of preallocated LUTSs and differ-

ent distribution patterns, may further improve results but are left for future work.

6.3.2 Preallocation Impact on Original User Design

The primary drawback of using a preallocation approach is that it places restrictions on the
implementation of the user design. Limiting the locations where logic can be placed forces the
vendor tool to work around these locations. The logic may be redirected more tightly into fewer
sites, causing routing congestion, or spread further across the device, increasing distance between
elements. The vendor tool will ensure basic functionality remains the same, but other factors, such
as timing, may be affected. In addition, if too many sites are preallocated, it is possible the design
will no longer fit on the chip at all. Implementation would fail entirely in this case.

The fastest possible clock period for each benchmark without preallocation in place was

found previously, during the experiments in Chapter 5. Here, the preallocation scheme is included
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within the constraints of these benchmarks and the test repeated. Timing constraints are tightened
until failure, indicating the fastest possible clock period at which the design can be successfully
implemented and meet timing. This experiment will show whether or not preallocation affects (1)

design timing, due to altered placement, or (2) implementation, due to lack of FPGA resources.

Results

Preallocation did not prevent successful implementation for any benchmark. Enough logic
resources remained for the user design despite 1% of LUTs being made unavailable.

The results of the timing closure test are shown in Table 6.1. The clock period change
induced by implementing the design with the preallocation scheme is +/- 0.1ns. Even for the
fastest baseline clock periods of the RPulseG and RNG benchmarks, this penalty is <10%. No
change occurred in six of fourteen benchmarks, and two benchmarks successfully implemented
a 0.1ns faster clock. This change is so trivial as to possibly be considered noise due to variance
in repeated implementation attempts. It may even be feasible to leave preallocation constraints in

place on some designs without concern after debug is complete.

Table 6.1: Minimum clock period of benchmarks before and after LUTs are preallocated.

Benchmark Original min. period | Prealloc min. period
LC370% 4.9ns 5.0ns
LC3 80% 5.2ns 5.2ns
LC3 90% 6.2ns 6.3ns
Sudoku 75% 6.6ns 6.7ns
Sudoku 94% 7.0ns 6.9ns
RNG 70% 1.6ns 1.6ns
RNG 80% 1.6ns 1.6ns
RNG 90% 1.6ns 1.7ns
uFIFO 70% 3.5ns 3.6ns
uFIFO 80% 3.8ns 3.8ns
uFIFO 90% 3.7ns 3.6ns
rpulseg 70% 1.6ns 1.6ns
rpulseg 80% 1.6ns 1.6ns
rpulseg 90% 1.6ns 1.6ns
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6.3.3 Preallocation Impact on DIME Debug

The experiments originally described in Chapter 4 are once again repeated, this time with
preallocation constraints used during benchmark implementation. A sweep of timing constraints
and probe counts is tested on all five benchmarks. Each configuration is repeated 200 times with
each repetition targeting a different, random selection of design nets. Bars in each chart thus repre-
sent an approximate average success rate given each configuration, regardless of which design nets
are being probed. Experiments will utilize the simulated annealing placement algorithm alongside
the preallocation scheme (results without simulated annealing placement can be seen in Appendix

B).

Results

Complete results are charted in Figure 6.6. Note that the x-axis of these charts, representing
the number of debug probes requested, is extended in comparison to previous results. For ease of
comparison, results from a single representative clock period are charted against results without
the preallocation scheme, but using simulated annealing placement, in Figure 6.7.

Note also that in these results, different “representative” clock periods are used between
the two experiments in the comparative results. The representative clock period is the fastest
period that maintains a reasonably high success rate as maximum probe count is reached. This
clock period represents a pseudo-best-fit curve across all configurations for that benchmark. Since
preallocation had a significant impact on DIME Debug critical path delays for most benchmarks,
a single clock period fails to properly represent both sets of results. For example, for experiments
on the LC3 benchmark, an 8ns clock period best represents the results before preallocation, but a

7ns period better represents the results with preallocation used (Figure 6.7, (a)).

Impact on Timing Closure

Four of five benchmarks saw higher success rates at faster clock periods with the prealloca-
tion scheme in place. Figure 6.7 (a, b, c, f) all show increased success rates across nearly all probe
counts with a Ins faster timing constraint when using preallocation. The uFIFO benchmark saw

higher success rates, though at the same clock period (Figure 6.7, (d)).
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Table 6.2: Comparison of minimum clock period of benchmarks before DIME Debug instrumen-
tation, after instrumentation, and after instrumentation using preallocation

Minimum Clock Period, Preallocation
Benchmark Uninstrumented Original DIME Preallocation DIME
LC3 (90%) 6ns (166.7MHz) Tns (+17%) ns (+17%)
sudoku (94%) Tns (142.8MHz) 8ns (+14%) Tns (0%)
RNG (90%) 1.6ns (625MHz) 8ns (+500%) Tns (+438%)
uFIFO (90%) 3.7ns (270.3MHz) Tns (+190%) Tns (+190%)
RPulseG (90%) 1.6ns (625MHz) 6ns (+375%) 6ns (+375%)

Another notable timing result is a small reduction in the baseline critical path penalty on
some benchmarks. Prior to using the preallocation scheme, the minimum critical path with DIME
Debug instrumented ranged from 6-8ns. The preallocation scheme reduces the highest penalties
and brings this range to 6-7ns (Table 6.2). In the case of the sudoku benchmark, this means
that a relatively small number of DIME Debug probes (<450) can sometimes (depending on net

selection) be instrumented with no critical path penalty whatsoever.

Impact on Trace Buffer Count

Three of five benchmarks displayed a dramatic improvement in the maximum number of
DIME trace buffers that could be instrumented when using preallocation. The LC3 and RPulseG
benchmarks (Figure 6.7 (a,e)) reached probe counts roughly 2x higher than their non-preallocated
counterpart, while the RNG benchmark (Figure 6.7 (c)) saw nearly triple the previous maximum.
The uFIFO benchmark (Figure 6.7 (d)) experienced no change in probe count.

The sudoku benchmark (Figure 6.7 (b)) is the anomaly in terms of probe count. Prealloca-
tion roughly halves the maximum number of probes that can be instrumented. In an effort to un-
derstand this anomaly, the original reasoning for attempting a preallocation method was checked.
DIME trace buffers must be placed on FPGA sites with no user logic. Is it possible that, for some
designs, preallocating LUTs could force the design to spread out and actually reduce the number
of unused LUTs? To test this hypothesis, each benchmark was run through a simple RapidWright
program that counts the number of unused LUTs. These results are in Table 6.3, with notable
results in bold. The sudoku benchmark is indeed an outlier—unlike nearly every other benchmark,

preallocation actually reduced the number of free LUT sites on the FPGA.
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Table 6.3: LUT sites left unused in each benchmark with and without preallocation scheme applied

Benchmark Original unused sites | Prealloc unused sites
LC3 70% 1589 (8.7%) 1919 (10.6%)
LC3 80% 751 (4.1%) 991 (5.4%)
LC3 90% 129 (0.7%) 381 (2.1%)
sudoku 75% 2588 (14.2%) 2678 (14.7%)
sudoku 94 % 556 (3.1%) 338 (1.9%)
RNG 70% 1925 (10.6%) 2004 (11%)
RNG 80% 305 (1.7%) 381 (2.1%)
RNG 90% 132 (0.7%) 252 (1.4%)
uFIFO 70% 1505 (8.3%) 1605 (8.8%)
uFIFO 80% 192 (1.1%) 223 (1.2%)
uFIFO 90% 217 (1.2%) 245 (1.3%)
rpulseg 70 % 2438 (13.4%) 2083 (11.5%)
rpulseg 80% 1268 (7%) 1315 (7.2%)
rpulseg 90% 561 (3.1%) 960 (5.3%)

6.4 Conclusion

It is important that an embedded logic analyzer carefully avoids excessively altering the de-
sign being debugged. If design timing is altered, it may obfuscate the very bugs the logic analyzer
is intended to find. One option of improving timing results is to increase proximity of design ele-
ments. If elements are closer together, wires between them can be shorter, and propagation delay
can be reduced. This chapter has described the three approaches used to increase debug element
proximity for DIME Debug.

First, a greedy placement is used that selects local optima for each DIME trace buffer. This
is the method used in the first two sets of experiments of this dissertation, when the capabilities
of DIME Debug are compared against the Xilinx ILA and the impact of DIME Debug on timing
closure is explored. While adequate for demonstrating the ability of DIME Debug to provide
observability into extremely large designs, a 6-8ns critical path delay is also introduced into the
design when using greedy placement.

Second, greedy placement is improved by following the initial placement with a simulated
annealing optimization algorithm. Simulated annealing broadens the search space and increases
the chances of finding a global optimum. This placement method was effective in reducing the

average Manhattan distance between debug elements when compared to greedy, improving timing
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results and increasing DIME Debug implementation success rates for most benchmarks. The im-
perfect nature of this algorithm did not improve results in every case and the baseline critical path
introduced by DIME Debug was mostly unaffected.

Third, a novel preallocation scheme is used. Rather than continue to improve placement
with placement algorithms, debug placement is improved with an alteration to the layout of the
user design. A small number of LUTs, arranged such that they are well-suited for DIME trace
buffers, are set aside for use by debug circuitry. While this raises concerns as to whether or not it
would affect the user design, only trivial impact is seen. The improvements to DIME Debug prove
to be substantial. Two to three times the number of probes can be instrumented with approximately
Ins faster timing constraints on most benchmarks when compared to results before preallocation
is used. The minimum critical path delay of DIME Debug is reduced for some benchmarks. The
sudoku benchmark experienced no timing penalty whatsoever in some experiments. Anomalies
to these results include the uFIFO benchmark, which saw no improvement in timing results, and
the sudoku benchmark, which, despite timing improvement, was only able to instrument approxi-

mately half the number of probes with preallocation in place.
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CHAPTER 7. ISOLATING LOW-PRIORITY DEBUG PATHS FROM USER DESIGN

Improving trace buffer placement is not the only option for improving critical path penalties
incurred by DIME Debug. Some routes within the debug system do not need to be optimized
to improve timing results since they never need to operate at the same clock period as the user
design. Instead, these routes should be isolated from the timing constraints of the rest of the system.
This chapter will review relevant aspects of the DIME Debug system and discuss experiments and

results of isolating low-timing-priority debug paths from user timing constraints.

7.1 Review of DIME Debug System

As discussed in Chapter 3, the DIME Debug system operates in two modes: run mode and
debug mode. Run mode is relatively simple. A 2-to-1 MUX is programmed to pass signal data
from a design net to an SRL trace buffer. Debug mode, which the system enters after a trigger
is asserted, is more complex. The 2-to-1 MUX select signals are toggled, chaining every DIME
trace buffer in the system into a single long shift-register. Then, upon command from the host,
a state machine carefully governs the clock enable signal on each SRL. This state machine is
effectively crossing the clock domain from the user clock to the JTAG clock, since the single long
shift-register formed by the chain of SRLs terminates at a BSCAN primitive. A BSCAN primitive
allows the host to interface with the JTAG system on the KUO25. This is how the engineer gathers
the observed data.

Note the routes that run from DIME trace buffer to DIME trace buffer (Figure 7.1). These
nets are driven by DIME SRLs that are clocked by the user design. Because of this, Vivado
considers these routes to be part of the user design—and therefore under the same timing constraint.
However, as discussed above, these paths will never operate in sync with the user clock. In debug
mode, the state machine is governing the clock enable input on the SRLs such that these paths

are being operated at the same speed as the JTAG clock. The JTAG clock on an FPGA is often
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Figure 7.1: Two-buffer DIME Debug System. Red nets must function at user clock rate, but blue
nets never will.

several times slower than the user clock. When instrumented with DIME Debug, benchmarks
used in these experiments can operate at, in the worst case, I00MHz or faster. The JTAG clock
on Kintex Ultrascale FPGAs can operate at a maximum frequency of 66MHz [56], however, the
default and Xilinx-recommended frequency when communicating over USB is only 6MHz [57].
This frequency is more than adequate for pulling observed data from the DIME Debug system. In
other words, the JTAG clock need never operate more than 1/10th the speed of the user clock in
these experiments.

This indicates that buffer-to-buffer routes do not need to be under the same timing con-
straint as the user design. This is especially of interest because the methods used to improve
critical path delays from DIME Debug do not take these routes into account. Neither greedy nor
simulated annealing placement consider buffer-to-buffer routes, only paths from user net-to-MUX
and MUX-to-SRL. The preallocation scheme is designed to improve those routes, though it offers
no improvement for buffer-to-buffer connections. In addition, signals of interest can be located
anywhere across the entire user design. Without altering the user design itself, it is impossible
to optimize the locations of these nets for debug purposes. The DIME Debug system could be
optimized to factor in buffer-to-buffer paths, however, the lower clocking needs do not justify the

effort. If buffer-to-buffer paths contain the critical path of a combined circuit, simply relaxing
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their timing constraint may allow implementation to successfully complete and meet timing. Since
buffer-to-buffer routes are never optimized and debug net selection could place buffers anywhere

on the chip, these paths are likely to be long and have high propagation delays.

7.2 Method

We will effectively isolate the buffer-to-buffer paths from the user clock using Xilinx design
constraints. After DIME trace buffers are instrumented, a TCL script is used to finalize routing.
This script is used to add constraints to the design that establish the routes between DIME trace
buffers as “Multicycle Paths” [55]. By relaxing the hold and setup requirements on the path by one
clock cycle, the vendor tool is informed that these routes only need to be able to operate at half the
clock speed of the user design. A more customized multicycle path constraint could be formulated
based on the clock speed of each benchmark, however, using a generalized half-speed constraint
will reasonably demonstrate whether or not buffer-to-buffer routes are becoming the critical path
of combined circuits.

To test this hypothesis, previous experiments are repeated with multicycle path constraints
in place. For each configuration of timing constraint and probe count, an attempt is made to instru-
ment DIME Debug with 200 random net selections in order to find an approximate average rate
of success. Simulated annealing will be used for trace buffer placement (results without simulated

annealing placement can be seen in Appendix B).

Results

Complete results are charted in Figure 7.2. For ease of comparison, results from a single
representative clock period are charted against previous results without multicycle constraints in
Figure 7.3.

Using multicycle constraints resulted in trivial changes to the success rates on the LC3 and
sudoku benchmarks (Figure 7.3, (a,b)). However, these experiments provide a dramatic increase in
implementation success on the other three benchmarks. uFIFO and RPulseG benchmarks both see
significant increases in success for their fastest clock periods as higher probe counts are requested

(Figure 7.3, (d, e)). The most remarkable results came from the RNG benchmark. Originally, the
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icycle path experiments compared to simulated annealing alone.
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fastest clock period possible on this benchmark once instrumented with DIME Debug was 8ns.
Using multicycle path constraints, this minimum period is not only brought down 25% to 6ns,
but perfect success is continually observed at this frequency up until maximum probe counts are
reached.

The LC3 and sudoku benchmarks did not experience improvement from multicycle path
constraints, but also suffered no drop in success rates. Multicycle path constraints will not improve
results if the buffer-to-buffer paths are not the critical paths of the combined circuit. Compared
to the other three benchmarks, these two benchmarks have relatively slow minimum clock periods
before debug circuitry is instrumented (6-7ns, compared to 1.6-3.7ns of other benchmarks). It
is probable that user nets already present in these designs, especially if they have been tied into
DIME Debug probes, have an equal or greater impact on design critical path than the buffer-to-

buffer routes.

7.3 Conclusion

Multicycle path experiments significantly improved implementation success rates in three
of five benchmarks, especially at high probe counts. This indicates that buffer-to-buffer paths
do represent one of the prohibiting factors for timing closure in combined DIME Debug circuits.
Including multicycle constraints allows the router to recognize that these paths do not need to
operate at full user clock speed, enabling successful implementation and timing closure in these
cases.

The successful results of these experiments lead to considering other possible locations of
critical paths within the DIME Debug system. Paths between user nets and DIME trace buffers
and paths between DIME trace buffers have been analyzed and optimized. However, the routes
of the DIME Debug control system have not been considered. These paths fan out to each trace
buffer within the system, which may result in long routes and high propagation delays. Since
the enhancements to DIME Debug presented in this dissertation have only somewhat reduced the
minimum propagation delay of DIME Debug, it’s entirely possible that these control routes are
now the bottleneck. Optimizing these paths for timing or altering their design such that they could
be constrained as multicycle paths could further reduce critical paths of the combined user and

DIME Debug circuit- This.endeavor, however, is saved for future work.
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CHAPTER 8. EXTENDING DIME DEBUG TRACE BUFFER DEPTH

DIME Debug trace buffers up until this point have been 16-bits deep, since 16-bit SRLs
are easily implemented on a single memory LUT within the FPGA. These tiny buffers have shown
that embedded debug can be implemented onto very dense FPGA designs and are adequate for
demonstrating various methods of optimizing this debug tool. A 16-bit trace buffer is preferable
over no trace buffer at all, as in situations when the commercial ILA was unable to be instrumented
into the design. However, 16-bits is a very small amount of data to observe for systems processing
millions of bits of data every second. The following experiment aims to increase the length of
DIME Debug trace buffers while retaining other benefits of the tool.

This chapter will review relevant background information concerning SRLs, describe the

method used to extend trace buffer depth, and provide results of experiments implementing them.

8.1 Anatomy of a Kintex CLB

Each configurable logic block (CLB) on the Kintex KU025 contains eight programmable
LUTs. On memory CLB, these LUTs can be implemented as 16- or 32-bit SRLs. However,
implementing one of these LUTs as a 32-bit SRL precludes the remaining LUTs on the CLB from
being implemented as SRLs at all (Figure 8.1, (a)). This restriction is imposed by Xilinx and
cannot be circumvented, even when modifying a design with RapidWright. When DIME Debug
was initially created, it was decided to implement one trace buffer per LUT in order to keep each
probe as lean as possible. Implementing each trace buffer as a 16-bit SRL allows memory CLBs
to host eight trace buffers each, maximizing the number of probes possible within dense FPGA

designs (Figure 8.1, (b)).
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Figure 8.1: Arrangment of 16- or 32-bit SRL on Kintex Ultrascale CLB.

8.2 Method

To utilize more than one LUT on the tile as a 32-bit SRL, they must be chained. This

feature is leveraged in order to lengthen DIME trace buffers (Figure 8.1, (c)). Instead of eight

16-bit trace buffers on one tile, a single 256-bit (32x8) trace buffer will be implemented instead,

increasing buffer memory by 16x.

To test the feasibility of this method, experiments from prior chapters will be repeated with

the RapidWright instrumentation tool modified to place 256-bit trace buffers. As each trace buffer

now requires eight memory LUTs, the number of probes requested will be scaled accordingly. All

other aspects of the experiments will be the same as previous iterations — implementation will be

attempted 200 times, each repetition targeting a randomized net selection for each configuration of

benchmark, timing constraint, and probe count. Experiments will also utilize simulated annealing

placement, multicycle path constraints, and the preallocation scheme.
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8.3 Results

Results of these experiments are charted in Figure 8.2. For ease of comparison, these
results are shown again side-by-side to experiments instrumenting 16-bit DIME trace buffers in
Figure 8.3. Note the significantly different probe counts attempted (x-axis) between 16-bit and
256-bit results.

Success rates when instrumenting 256-bit DIME trace buffers are nearly identical to rates
for 16-bit buffers with approximately a 1:8 probe count ratio. This significant decrease in probe
counts is fully expected, since 256-bit buffers require 8x the number of memory LUTs compared to
16-bit. While 256-bit buffers still only require a single non-memory LUT, there are fewer memory
LUTs on the FPGA and they are more likely to become the resource bottleneck.

While probe counts are significantly lower, debug memory is significantly higher. Each
individual trace buffer can now hold a 256-bit signal history, a 16x increase from single LUT, 16-
bit buffers. In addition, the overall memory of the entire debug system is approximately doubled.
When compared to a 16-bit DIME Debug system, roughly the same number of LUTs are dedicated
to trace buffer memory. However, when 256-bit buffers are implemented, each of those LUTs is
implemented as a 32-bit SRL, rather than 16-bit, and contains twice the memory.

For some benchmarks, timing closure is also improved when using 256-bit buffers. This is
most easily seen in results for the LC3 benchmark with a 7ns timing constraint (Figure 8.3 (a) vs
(b)) and for the sudoku benchmark with a 7 or 8ns timing constraint (Figure 8.3 (c) vs (d)). The
16-bit and 256-bit results are at nearly an 8:1 probe count ratio, yet higher success rates are seen for
these clock periods at higher probe counts. This is likely due to the simple fact that fewer probes
mean fewer routes and lower routing congestion. A group of eight LUTs on a single CLB now
only requires routing to a single user net, rather than eight. The routes between the eight LUTs of

a 256-bit buffer are chain routes within the CLB and have trivial propagation delay.

8.4 Conclusion

The experiments in this chapter have successfully demonstrated that DIME Debug trace
buffers can be deepened from their original 16-bit form to 256-bit, a 16x increase. Approximately

1/8th the number of 256-bit buffers can be instrumented into designs in comparison to 16-bit, since
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they require 8x the number of memory LUTs. Fewer probed design nets also result in somewhat
lowered timing penalties.

In application, the choice between 16-bit and 256-bit DIME Debug trace buffers would
come down to debug needs. An engineer requiring more signals to be probed might favor 16-bit
buffers, but one needing longer trace histories would select 256-bit buffers. Future enhancements
to DIME Debug could allow the engineer to select which signals will be probed with the shorter or
longer buffers. In addition, Xilinx FPGAs include functionality to chain SRLs across CLBs. This

feature could be leveraged to increase DIME trace buffer depth beyond 256-bit.
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CHAPTERY9. CONCLUSION

This chapter will review the research presented in this dissertation, provide concluding

remarks, and suggest several possibilities for future work.

9.1 Summary of Research

Chapters 1 and 2 introduce the motivation and background for this work, namely, FPGAs
and the challenges presented in debugging designs built on them. While there are many debug
solutions for FPGA projects, they all come with differing limitations. One limitation that had
previously been largely unaddressed is instrumenting an embedded logic analyzer into an FPGA
design that consumes nearly all of the resources on the chip. In addition, no previous work has
attempted to use distributed LUT-based memory for debug trace buffers.

Chapter 3 introduces Distributed Memory (DIME) Debug. Rather than using BRAM, a
relatively scarce resource on FPGAs, DIME Debug uses the LUTs spread across the device as
small memories for debug trace buffers. Since LUTs are so abundant on an FPGA, it is virtually
guaranteed that even large designs will leave some unused. The RapidWright CAD tool is used
to scavenge leftover LUTs to instrument small trace buffers into an implemented design. A state
machine and BSCAN primitive, tied to the JTAG interface, allow the host to gather debug data
once triggering has occurred.

Chapter 4 compares DIME Debug to a commercial logic analyzer, the Xilinx ILA, to test
the hypothesis that a distributed memory based embedded logic analyzer can fit into designs when
other options cannot. It is shown that, while shorter in terms of signal history, a much higher
number of DIME Debug probes can fit into large designs compared to the ILA. For the largest
benchmark, where 90% of the device LUTs were already used, a small number of DIME trace
buffers could be still be instrumented when the ILA failed entirely. Experiments in this chapter

demonstrate that LUT memory trace buffers are capable of enabling embedded debug even in
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very large FPGA designs or designs that require all BRAM on the device. It was also shown that
leveraging RapidWright for instrumentation reduces debug iteration time by at least 3x.

Chapter 5 investigated the impact DIME Debug will have on the user design once instru-
mented in terms of timing closure. If a design is forced to operate at a lower clock rate with debug
circuitry in place, it is possible that the very bugs being sought may be hidden. Instrumenting
DIME Debug into a design introduces minimum critical path delays between 6-8ns. This penalty
grows as more and more probes are requested. These critical paths incur a relatively small penalty
to the timing closure of benchmarks that were only capable of operating near these speeds to begin
with. However, some benchmarks originally operated at much higher frequencies. DIME Debug
forces a significant slowdown on these benchmarks (up to 500%). This chapter presents a thor-
ough exploration and quantification of the timing impact that instrumented debug circuitry has on
an FPGA design.

Chapter 6 explores various ways of optimizing the placement of DIME Debug trace buffers
into the design. First, a greedy algorithm, which favors local optima, is described. This method has
been effectively used for buffer placement during experiments in Chapters 4 and 5. Second, the
probabilistic simulated annealing optimization algorithm is described. Using simulated annealing
in DIME trace buffer placement improves critical path penalties at high probe counts for most
benchmarks. Finally, a resource preallocation scheme is introduced as an alternative placement
approach. Rather than rely solely on leftover unused LUTSs, a small number are set aside before
the user design is implemented. While posing almost no penalty to the user design, preallocation
allows 2-3x the number of DIME Debug probes to be instrumented at approximately 1ns faster
clock rates for most benchmarks. The baseline critical path penalty first seen in Chapter 5 is also
lowered by Ins in some cases.

The experiments in Chapter 6 demonstrate that distributed memory trace buffers can be
optimized for placement, and doing so is typically effective in lowering critical paths. Prealloca-
tion experiments offer a novel contribution in demonstrating that setting aside a small percentage
of CLBs can have near-negligible effect on the user circuit while providing significant gains for
distributed-memory debug.

Chapter 7 concerns the routes between DIME Debug trace buffers. These paths will only

ever operate at JTAG clock speed, which is significantly slower than the clock period of benchmark
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circuits. Therefore, buffer-to-buffer routes do not need to be considered as strictly for timing
closure of the combined circuit. The timing requirement for these paths can be loosened with
Xilinx multicyle path constraints. Experiments with multicycle path constraints demonstrated that,
for benchmarks that originally operated at relatively fast clock frequencies, buffer-to-buffer paths
were often becoming the critical path bottleneck of the combined circuit. Timing results improved
significantly, especially at high probe counts. The RNG benchmark saw particularly good results
that include a decreased minimum clock period from 8 to 6ns.

Finally, in Chapter 8, the depth of DIME Debug trace buffers is increased. Leveraging the
ability to chain 32-bit SRL within a single CLB, signal history is expanded from 16- to 256-bits.
As each buffer now requires eight memory-LUTs instead of one, the number of probes that can
be instrumented is understandably divided by approximately eight. However, these probes hold
longer trace histories, and the reduced number of routing resources resulted in some improvement
in timing results. While still small buffers in comparison to those implemented on BRAM, a
16x increase in signal history may be helpful for finding design bugs. This chapter successfully
demonstrates that DIME Debug trace buffers can be lengthened to 256-bits while retaining most

of the benefits of distributed memory trace buffers.

9.2 Concluding Remarks

FPGAs are powerful tools for prototyping, academics, low overhead/low volume produc-
tion, and a variety of other applications. They are also, however, very challenging to program, and
the debug step is a major factor. The signals inside of a hardware device are difficult to view and
analyze. Commercially available options provide visibility, but at significant penalties in terms of
programmer time and design impact. Academic research has stepped in to provide tools to lower
the debug iteration time, area impact, and critical path penalties. The research in this dissertation
builds upon existing advances in FPGA debug in several ways.

The primary contribution of this work is exploring the use of distributed LUT memory,
rather than traditionally used BRAM, for debug trace buffers. It was hypothesized that distributed
memory trace buffers could be used to research possibilities of trace-based debugging that have
previously been largely unexplored, such as debug visibility for FPGA designs that are extremely

large. or requite.all.device. BRAM. The Distributed Memory (DIME) Debug tool was created for
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this purpose. DIME Debug is used to demonstrate that distributed memory trace buffers can enable
embedded debug on very large designs even when commercially available logic analyzers are
unable to fit within leftover resources. DIME Debug requires no BRAM whatsoever, allowing the
user to use as many of this resource as needed.

Signal visibility is valuable, but only if the integrity of the signal is intact. To prevent
obfuscation of bugs, an embedded logic analyzer must be designed such that timing impact on
user design is kept reasonably low. When using BRAM for trace buffers, this is done by carefully
selecting which design net will be tied into which BRAM and optimizing routing. When using
distributed memory trace buffers, a unique opportunity exists to leverage the ubiquitousness of
LUTs on the device and instead optimize the placement of the buffers. To this end, in addition to
using optimization algorithms like simulated annealing, a novel preallocation scheme is developed.
The user design is prohibited from occupying a small amount of FPGA logic so it can later be
utilized by debug circuitry. These experiments demonstrate not only that preallocation provides
significant improvement to DIME Debug, but also that setting aside a small amount of device
resources in this manner poses almost no penalty to the original design.

In conclusion, distributed memory is a viable substitute for BRAM trace buffers in situa-
tions where BRAM based methods are not feasible for FPGA debug. The DIME Debug tool is
a working prototype that demonstrates this capability. In its present form, DIME Debug can be
instrumented into designs with the proper logic inserted alongside the user design and some ba-
sic scripting within the Vivado Suite. This process could be reduced to a single step with some
refinement of the RapidWright instrumentation code. In 15 minutes or less, DIME Debug can pro-
vide some signal visibility into fully implemented designs, even those that are extremely large or
that consume all BRAM on the FPGA. DIME Debug can also be useful for rapid debug iterations
in situations where only a small amount of debug data is needed to quickly identify a problem,
regardless of user design size.

DIME Debug could feasibly play a role in the field of FPGA debug in these situations.
There are, however, some limitations of DIME Debug to be overcome in future work for this tool
to become fully realized. Probably the most significant of these is the lack of a refined trigger-
ing mechanism. Routing is also currently completed in Vivado, when several opportunities for

improvement could be realized if completed in RapidWright. These limitations, ideas for their
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implementation, as well as other possibilities for future research into distributed memory debug
are described in detail in the following section. Should future endeavors address some of the most
crucial of these shortcomings, DIME Debug could become a very powerful tool in the FPGA field.
In situations where a modest trace history is sufficient, DIME Debug could replace commercial
logic analyzers by allowing engineers to rapidly debug any size FPGA design with virtually no

area overhead and minimal design impact.

9.3 Future Work

Triggering. Triggering is a crucial part of an FPGA debug system. The trigger cues trace
buffers when to store signal data. A precise trigger is especially important with DIME Debug
since it currently only supports, at maximum, a short 256-bit trace buffer depth. DIME Debug
presently uses a signal from the user design wired into the state machine as a trigger. This is a
very simplistic method that could be inadequate in many applications. Altering this trigger would
require a complete recompilation of the design, since it is part of the user design, slowing debug
iterations. Future work would include creating more advanced triggers for DIME Debug. This
trigger could be instrumented with RapidWright alongside the trace buffers for fast implementation
and control of placement. The potential increased impact on the user design from trigger circuitry
would also need to be investigated. As pointed out by Keeley in [39], trigger instrumentation can
be more complex than trace buffers. Hung, Eslami, and Wilton have presented relatively simple
triggering mechanisms utilizing leftover BRAM or DSP on the chip [40], and even LUTs [37].
Incorporating these methods would provide significantly more advanced triggering functionality
and may allow DIME Debug to remain reasonably lean in terms of design impact.

Routing. The current version of DIME Debug utilizes the Xilinx router to complete imple-
mentation of debug circuitry. This was a decision made out of convenience, as routing efficiency
is not the primary focus of this research. It is entirely possible for the routing step to also be
completed using the RapidWright tool. This would open the door to a couple of advantages.

First, shorter debug iteration time. On average, the entirety of DIME Debug instrumenta-
tion across all experiments presented in this dissertation, consumes 8.8 minutes, of which 6 minutes
(68%) 1s consumed by Vivado’s router. RapidWright is likely to complete routing much faster (as

shown.with-the simple-RapidSmith router in [39]), allowing even shorter DIME Debug iterations.
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Second, reduced impact on user design. For the experiments in this study, when routing
DIME trace buffers, user route rip-up is allowed if necessary. This means that, if needed in order
to meet timing closure, the router can alter the routing of the user design when finalizing debug
routes. This represents a trade-off that favors lower critical path delay in the combined circuit
over preserving the initial placement of user design routes. Either of these effects on the user
circuit (longer critical path or altering routes) comes with the possibility of hiding old bugs or
creating new bugs. Prohibiting user design route rip-up can be configured into the Vivado route
flow. However, more intricate optimizations could be more easily and quickly implemented using
RapidWright. The ideal solution would be including additional optimizations to DIME Debug that
minimize (or eliminate) timing issues while allowing the user design to remain undisturbed. One
notable possibility to achieve this is adding pipelining stages to DIME trace buffer routes. Related
work that has implemented this optimization nearly eliminated the critical paths introduced by
their debug approach [40]. Incorporating pipelining into DIME Debug may eliminate critical path
penalties while maintaining most of the benefit of distributed memory trace buffers.

Optimization of DIME Debug Control System Routes. In this dissertation, routes be-
tween user signals and trace buffers, as well as buffer-to-buffer routes, are considered for their
propagation delays and how this woul affect the critical path of the entire design. Experiments are
conducted to improve this impact. However, DIME Debug control system routes are likely playing
a role in the impact DIME Debug has on combined circuit timing closure as well. A clock enable
signal must be routed from the state machine to each DIME Debug SRL. BSCAN signals must
be tied to both the state machine as well as each SRL. Optimizing for the timing impact of these
routes would likely further reduce the timing closure impact from instrumenting DIME Debug into
a design.

Additional Benchmarks. The five benchmarks used in this dissertation to display the
capabilities of distributed-memory based debug have all been designed specifically to reach certain
LUT utilization thresholds on the targeted FPGA device. This is accomplished by taking smaller
modules and replicating them enough times until the desired thresholds are reached. As such, these
benchmarks contain many repetitive circuits, rather than a single large, comprehensive design.
A benchmark large enough to fill an FPGA without replication may provide differing outcomes

when instrumented with DIME Debug. For example, a larger and more complex benchmark may

73

www.manaraa.com



necessitate slower user clock speeds such that the propagation delays of the DIME Debug system
become negligible. Replication-based designs were used in this dissertation due to ease of creation
in comparison to a design large enough to fill even a majority of the resource rich Kintex KUO025.

Alternative Preallocation Schemes. The preallocation experiments presented in this dis-
sertation use a single layout of resources. Approximately 1% of the LUTs on the chip were pre-
allocated in an evenly distributed pattern. This generalized method was effective for improving
results on most benchmarks. However, for the sudoku benchmark, part of the results worsened.
It is possible that a customized preallocation scheme, created based on the design under test and
which nets are being targeted for probing, could further optimize the debug process. Alternative
schemes could include different locations and/or amounts of preallocated resources.

Alternative Distributed Memory Trace Buffer Configurations. This dissertation showed
that the original 16-bit DIME trace buffers could be extended to 256-bit by chaining all eight LUTs
in a Kintex tile and configuring them as 32-bit SRLs. Trace buffer length could be further extended
by chaining LUTSs across multiple tiles. This would introduce additional routes between sites that
could further impact timing closure. Enhancements to DIME Debug could be implemented to
allow a user to select the requisite trace length for individual signals.

LUTs on Kintex FPGAs can also be configured as 64-bit non-shifting RAMs. With some
added external circuitry to manage data in these RAMs, they could be utilized as trace buffers.
An efficiency comparison could be made between 64-bit RAMs with additional logic and 32-bit
standalone SRL trace buffers. Since SRLs are exclusive to Xilinx devices, using 64-bit RAM
would open the door to distributed memory based embedded debug that could be ported to non-
Xilinx FPGAs.

Multiple Clock Domains. This work assumes a design with a single user clock, however,
the algorithms could be expanded to account for multiple clock domains—a task difficult to achieve
with commercial embedded logic analyzers. SRLs would need to be appropriately clocked based
on the clock domain that probes lie in, and one state machine would need to be instrumented for
each clock.

LUTs in Partially-Used CLBs. It was initially determined that DIME Debug trace buffers
should not be instrumented onto unused LUTs within partially-used CLBs. This decision was

made under advisement from Xilinx Labs that using these LUTs would have too large of an impact
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on the user design. However, it has since been discovered that it may be possible to leverage
these LUTs without significant penalty. Including such LUTs as possible placement locations for
DIME Debug trace buffers could allow instrumentation into even denser FPGA designs. Additional

routing, timing, and other impacts on the user design would need to be evaluated.
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APPENDIX A. INSTRUMENTING DIME DEBUG CIRCUITRY WITH RAPIDWRIGHT

This appendix will provide in-depth detail about the process of instrumenting FPGA cir-
cuitry with the RapidWright backend CAD tool. Common RapidWright objects will be referred to

with capitalization, such as a Tile or Design.

A.1 Devices, Designs, Netlists, and RapidWright

This section will describe a few important aspects concerning how the FPGA and the logic
to be programmed upon it is represented in RapidWright. The three layers to be aware of are the
Device, the Design, and the Netlist (or Logical Design).

Device. A RapidWright Device is the representation of the FPGA itself, independent from
the Design (below) that will be programmed onto it. The Device is aware of the physical layout of
the FPGA, such as coordinates of individual tiles that contain programmable fabric.

Design. A RapidWright Design represents the physical part of the circuit that is to be
programmed onto the FPGA. For example, the Device will contain Site objects, and the Design
will contain Sitelnstance objects. That is, a portion of the design that has been implemented and
placed onto a particular Site. The Design object is typically the base of any RapidWright project. A
Xilinx Design Checkpoint (DCP) is converted directly into a Design and the entirety of the FPGA
design is contained within it. The Design is aware of both the Device and the Netlist (below).

Netlist/Logical Design. A Netlist, or EDIFNetlist, represents the logical aspect of the
FPGA design. For example, the programming of a LUT to be either an SRL or a 2-to-1 MUX is
determined at the logical level in the Netlist. The majority of design manipulations must happen at
both the physical (Design) and logical (EDIFNetlist) level. The EDIF portion of the name is based

on the Electronic Data Interchange Format file that Xilinx uses to represent their netlists.
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A.2 Instrumenting DIME Circuitry

This section will go over the specifics of how the DIME Debug tool is instrumented into

the FPGA design using RapidWright.

A.2.1 Import Design

The first step is to draw all of the design data into RapidWright with an object in the Design

class. This is done in a single line of code:

Design design = CheckpointTools.readCheckpoint (args([2], args[3]);

Note that command line argument [2] is the original DCP, and command line argument [3]
is an EDIF file drawn from Vivado alongside the DCP. At the point in RapidWright’s development
when this tool was written, the EDIF file needed to be imported alongside the DCP since the EDIF
included within the DCP is encrypted.

One specific piece of information that is needed from the design before any instrumentation
can complete is the list of design Nets that are going to be probed. For most of the experiments in
this dissertation, this was done by determining the total number of nets in the design and selecting
200 of them at random (ensuring nets within the debug system or clocking system are not selected).
However, for application purposes, this would be done by finding all nets that are marked for debug.
The getNetsMarkedForDebug function within the RapidWright ILAlnserter class handles this task

by checking both the properties of each EDIFNet and the design constraints:

/ % *
* This method will examine a design for any nets marked for debug
* and return the list of names of those nets.
* (@param design The design to examine
* @return A list of net names marked for debug.
*/
public static List<String> getNetsMarkedForDebug (Design design) {
// Nets can be marked for debug as a netlist property

ArrayList<String> debugNets = new ArrayList<>();
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1 for (Entry<String, EDIFNet> e : design.getNetlistNetMap () .
entrySet ()) {
12 EDIFPropertyValue p = e.getValue () .getProperty (

EDIF_MARK_DEBUG) ;

13 if(p == null) continue;

14 String etv = p.getValue();

15 if (etv.equals (ETV_true) || etv.equals (ETV_TRUE)) {

16 debugNets.add (e.getKey ());

17 }

18 }

19

20 // Nets can also be marked for debug in XDC

21 ArrayList<ArrayList<String>> xdcLines = new ArrayList<ArrayList

<String>>();

2 if (design.getEarlyXDCConstraints () != null) xdcLines.add(design
.getEarlyXDCConstraints ());

23 if (design.getXDCConstraints () != null) xdcLines.add(design.
getXDCConstraints());

24 if (design.getLateXDCConstraints () != null) xdcLines.add(design.

getLateXDCConstraints());

25 for (ArrayList<String> file : xdcLines) {

26 for(String line : file) {

27 if(line.equals("") || line.startsWith("#")) continue;
28 if(line.contains (XDC_MARK_DEBUG) && line.contains (

XDC_SET_PROPERTY) ) {

29 String[] tokens = line.split ("\\s+");

30 if (tokens[0] .equals (XDC_SET_PROPERTY) && tokens[1l].
equals (XDC_MARK_DEBUG) && tokens[2].equals("true
") && tokens[3].equals("[get_nets")) {

31 String netName = tokens[4].substring(tokens[4].

indexOf (" {’)+1, tokens[4].indexOf(’"}’"));

debugNets.add (netName) ;
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33 }

34 }

35 }

36 }

37 return debugNets;

38 }

When finding a random set of nets for debug, the Net itself is referenced in an ArrayList

called netsToProbeNets.

A.2.2 Create Trace Buffers

Armed with the complete Design and a list of Nets needing probing, the Cells that will
represent the two parts of DIME Debug trace buffers can be created. As mentioned previously,
many design manipulating operations in RapidWright will need to be done in two steps, physical

(Design) and logical (EDIFNetlist).

Logical Cell Creation

For the logical side, an EDIFCell must be created. This will contain the information con-
cerning what sort of cell is being created and how it is to be programmed. For the MUX, a LUT3

type cell is needed, and we want to program it as a 2-to-1 MUX:

39 EDIFNetlist myEdif = design.getNetlist ();

40

41 // See if the LUT3 type exists. If not, create and add it.

2 EDIFCell newECell = myEdif.getCell ("LUT3");

43 if (newkECell == null) {

44 newECell = new EDIFCell (myEdif.getLibrary ("hdi_primitives"),"
LUT3");

45 // Now add all the ports.

46 newECell.addPort (new EDIFPort ("O",EDIFDirection.OUTPUT, 1)) ;

47 newkECell.addPort (new EDIFPort ("IO",EDIFDirection.INPUT,1));
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48 newkECell.addPort (new EDIFPort ("I1",EDIFDirection.INPUT,1));

49 newECell.addPort (new EDIFPort ("I2",EDIFDirection.INPUT,1));

50 }

51

52 // Now we have the "type," create our new EdifCellInstance

53 EDIFCellInstance newECI = new EDIFCellInstance (lutName, newECell,

myEdif.getTopCell());
54
55 // Give the cell the appropriate properties.

56 // This 1is the part that will actually make the LUT implement the
LUT equation I want (in this case, a 2 to 1 mux with I2 as the

select line, Il as the value when I2 is 1, I0 as the value when

I2 is 0)
57 // This results in LUT equation O = I0 & !'I2 + I1 & I2
58 newECI.addProperty ("INIT", "8 hCA", EDIFValueType.STRING) ;

A similar process creates the SRL, but an ”SRL16E” type of EDIFCell, with the appropriate

set of properties, is used instead.

Physical Cell Creation

Following logical cell creation, the physical cell must be created. A Cell will be created,

referencing the EDIFCell, and all of the logical ports will be associated with physical Pins:

59 Cell newLUT3 = new Cell();

60 newLUT3.setType ("LUT3");

61 newLUT3.setName (lutName) ;

62 newLUT3.setEDIFCellInstance (newECI) ; // The ECI created earlier

with edif tools

63 newLUT3.addPinMapping ("A1", "IOQ"); // Hard coded pin mappings.
64 newLUT3.addPinMapping ("A2", "I1");
65 newLUT3.addPinMapping ("A3", "I2");
66 newLUT3.addPinMapping ("O6", "O");
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newLUT3.setLocked (false);

This process is repeated for the SRL Cell with the appropriate Pin mappings.

Greedy Placement

After the MUX Cell and SRL Cell are created they are immediately assigned an initial
placement. A location is sought out that is physically close as possible to the source of the debug
net the Cell will be tied to. For the MUX, this is the source of the net that is being probed. For the
SRL, this is the MUX. Beginning at the tile of the source, a search pattern spirals outward until a
suitable, unused location is found. At this point in instrumentation, the Cells are added to several
hashmaps and arrays to maintain a record of their creation and initial placement. Their creation
and placement will be finalized and inserted into the Design after a final placement is decided on

with the simulated annealing algorithm.

A.2.3 Simulated Annealing Based Placement

At this point the Cells representing all DIME trace buffer MUXs and SRLs have been
created and are organized into both hashmaps (that affiliate each Cell with the preliminary Site it
is to be placed on) and parallel arrays. The next step is to optimize the placement of these Cells
by using simulated annealing. Additional arrays are created that contain all possible locations that
an SRL or MUX could be placed on, respectively. Possible locations include all unused LUTs as
well as LUTs that have an SRL or MUX preemptively placed on them. Memory and non-memory
LUTs are distinguished for SRLs and MUXs. These arrays are randomly indexed to select an SRL
or MUX that will attempt a location swap. Then the arrays of possible new locations are randomly
indexed and the outcome of the swap is determined, based on the new Manhattan distance and the
current temperature of the simulated annealing algorithm. If swaps are accepted, the hashmaps
affiliating Cells with Sites are updated. The implementation of simulated annealing is already

described in Chapter 6.
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A.2.4 Finalize Placement

Now that placement has been conclusively decided, the SRL and MUX Cells must be
inserted into the Design. The hashmap of Sites that will be occupied by trace buffer Cells is
iterated over. A Sitelnstance, based on the Site, is instantiated and included in the Design. Each
Cell is assigned to one of the eight LUTs of the Site (represented as ElementType) and added to

the Sitelnstance, bringing the Cell into the Design as well:

68 // Iterate over every Site that we will be using, adding the cells

to it, and adding them both to the design.

69 for (Entry<Site, ArrayList<Cell>> siteEntry : myUsedSites.entrySet ()
) |
70 Site thisSite = siteEntry.getKey();
71 ArrayList<Cell> cells = siteEntry.getValue();
) // Make a new Sitelnstance (creation will also add it to the
design)
73 SiteInstance thisInstance = new SitelInstance(thisSite.getName ()

+"_instance", design, thisSite.getTypeEnum(), thisSite);

74

75 // Select a LUT element for each cell.

76 int index = 0;

77 for (ElementType ETO : thisSite.getSiteType () .getElements()) {
78 // Ensure it 1is an element that works (a 6LUT)

79 1f(ETO.getName () .contains ("6LUT")) {

80 // Get the next cell in line.

81 Cell thisCell = cells.get (index);

82 // Give the cell the element.

83 thisCell.setElement (ETO) ;

84 // Add the cell to the instance (which will add it to

the design)
85 thisInstance.addCell (thisCell);
86

87 index++;
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88 // If we have assigned all the cells of this Site an

element, break out of the element loop.

89 if (index>=cells.size()) {
90 break;

o1 }

92 }

% } // End element loop

94 }

Since placement is a purely physical operation, this step does not require an additional

logical counterpart.

A.2.5 Stitch Trace Buffers

Now that all trace buffer SRL and MUX Cells have been created and their placement final-
ized, we must tell the Design which Nets should be tied to which Pins on those Cells. This step
must be done at both the physical and logical level. A helper function is used called connectPin
that, when given all of the necessary parameters, locates the net at both levels and ties it into the

correct design pins:

o5 ||[public static void connectPin(String net_name, String phys_pin, String
logic_pin, Cell cell, SitelInstance site_ins, EDIFCellInstance
e_cell_ins, EDIFCell e_cell, Design design, boolean create_net,
boolean pin_is_source) {

96

97 / /

o8 // Physical - Connect Pins to Cells

9 //

100 Pin newPin = new Pin(pin_is_source, phys_pin, site_ins);
101 Net newNet = design.getNet (net_name) ;

102

103 if (create_net) {

104 newNet = new Net (net_name) ;
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105 design.addNet (newNet) ;

106 }

107 newNet .addPin (newPin, true, true);

108

109 //

110 // Logical - Connect EdifPortRefs

1 //

112 EDIFPort newEPort = e_cell.getPort (logic_pin);

113 EDIFNet newENet = newNet.getLogicalNet (); // Get equivalent

logical net

114

115 if (create_net) {

116 newENet = new EDIFNet (net_name, e_cell_ins.getParentCell());
117 }

118 newENet .addPortRef (new EDIFPortRef (newEPort, newENet, -1,

e_cell_ins));
119

1o || }

Note that this does not route these nets. This ’stitching’ step only informs the Design, both
logically and physically, which Cells must be tied into any given net. Which specific physical

routes on the FPGA these nets will be placed on is decided later by the router in Vivado.

A.2.6 Export

At this point, the Cells that make up each DIME Debug trace buffer have been created,
given finalized placement, and assigned to be connected to signals. All of this information has
been included within the Design. The Design can now be pushed back into DCP format in order

to be exported back to Vivado:

CheckpointTools.writeCheckpoint (design, output_name+".dcp");

121
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A new EDIF is not created as it will be included with the DCP, unencrypted, with this

command.
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APPENDIX B. IMPLEMENTATION SUCCESS RATES

The implementation success rates documented throughout this dissertation typically built
on one another, with each successive experiment also utilizing the enhancements from previous
experiments. In this appendix, the implementation success results of each experiment without
prior experiments in place are given. These results show how enhancements to DIME Debug
impact each benchmark on their own. Note that all of these experiments implement 16-bit trace

buffers and utilize the greedy algorithm for placement.
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Figure B.1: Implementation success rates for 90% utilized LC3 benchmark with various enhance-
ments implemented one-by-one.
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Figure B.2: Implementation success rates for 94% utilized sudoku benchmark with various en-
hancements implemented one-by-one.
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Figure B.3: Implementation success rates for 90% utilized RNG benchmark with various enhance-
ments implemented one-by-one.
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Figure B.4: Implementation success rates for 90% utilized uFIFO benchmark with various en-
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